skip to main content
research-article

High-fidelity facial reflectance and geometry inference from an unconstrained image

Published: 30 July 2018 Publication History

Abstract

We present a deep learning-based technique to infer high-quality facial reflectance and geometry given a single unconstrained image of the subject, which may contain partial occlusions and arbitrary illumination conditions. The reconstructed high-resolution textures, which are generated in only a few seconds, include high-resolution skin surface reflectance maps, representing both the diffuse and specular albedo, and medium- and high-frequency displacement maps, thereby allowing us to render compelling digital avatars under novel lighting conditions. To extract this data, we train our deep neural networks with a high-quality skin reflectance and geometry database created with a state-of-the-art multi-view photometric stereo system using polarized gradient illumination. Given the raw facial texture map extracted from the input image, our neural networks synthesize complete reflectance and displacement maps, as well as complete missing regions caused by occlusions. The completed textures exhibit consistent quality throughout the face due to our network architecture, which propagates texture features from the visible region, resulting in high-fidelity details that are consistent with those seen in visible regions. We describe how this highly underconstrained problem is made tractable by dividing the full inference into smaller tasks, which are addressed by dedicated neural networks. We demonstrate the effectiveness of our network design with robust texture completion from images of faces that are largely occluded. With the inferred reflectance and geometry data, we demonstrate the rendering of high-fidelity 3D avatars from a variety of subjects captured under different lighting conditions. In addition, we perform evaluations demonstrating that our method can infer plausible facial reflectance and geometric details comparable to those obtained from high-end capture devices, and outperform alternative approaches that require only a single unconstrained input image.

Supplementary Material

ZIP File (162-427.zip)
Supplemental files.
MP4 File (162-427.mp4)
MP4 File (a162-yamaguchi.mp4)

References

[1]
M. Aittala, T. Aila, and J. Lehtinen. 2016. Reflectance modeling by neural texture synthesis. ACM Trans. Graph. 35, 4 (2016), 65.
[2]
O. Alexander, M. Rogers, W. Lambeth, M. Chiang, and P. Debevec. 2009. The Digital Emily Project: Photoreal Facial Modeling and Animation. In ACM SIGGRAPH 2009 Courses. ACM, New York, NY, USA, Article 12, 12:1--12:15 pages.
[3]
J. T. Barron and J. Malik. 2015a. Shape, illumination, and reflectance from shading. IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 8 (2015), 1670--1687.
[4]
J. T. Barron and J. Malik. 2015b. Shape, Illumination, and Reflectance from Shading. IEEE Transactions on Pattern Analysis and Machine Intelligence (2015).
[5]
T. Beeler, B. Bickel, P. Beardsley, B. Sumner, and M. Gross. 2010. High-quality single-shot capture of facial geometry. In ACM Trans. Graph., Vol. 29. ACM, 40.
[6]
T. Beeler, F. Hahn, D. Bradley, B. Bickel, P. Beardsley, C. Gotsman, R. W. Sumner, and M. Gross. 2011. High-quality passive facial performance capture using anchor frames. In ACM Trans. Graph., Vol. 30. ACM, 75.
[7]
V. Blanz and T. Vetter. 1999. A morphable model for the synthesis of 3D faces. In Proc. SIGGRAPH. 187--194.
[8]
J. Booth, A. Roussos, S. Zafeiriou, A. Ponniah, and D. Dunaway 2016. A 3d morphable model learnt from 10,000 faces. In Proc. CVPR. 5543--5552.
[9]
D. Bradley, T. Beeler, K. Mitchell, and others. 2017. Real-Time Multi-View Facial Capture with Synthetic Training. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 325--336.
[10]
C. Cao, D. Bradley, K. Zhou, and T. Beeler. 2015. Real-time high-fidelity facial performance capture. ACM Trans. Graph. 34, 4 (2015), 46.
[11]
C. Cao, H. Wu, Y. Weng, T. Shao, and K. Zhou. 2016. Real-time facial animation with image-based dynamic avatars. ACM Trans. Graph. 35, 4 (2016), 126.
[12]
P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, and W. Sarokin. 2000. Acquiring the Reflectance Field of a Human Face. In Proc. SIGGRAPH.
[13]
R. Donner, M. Reiter, G. Langs, P. Peloschek, and H. Bischof. 2006. Fast Active Appearance Model Search Using Canonical Correlation Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 10 (2006), 1690--1694.
[14]
C. N Duong, K. Luu, K. G. Quach, and T. D. Bui. 2015. Beyond principal components: Deep boltzmann machines for face modeling. In Proc. CVPR. 4786--4794.
[15]
G.J. Edwards, C.J. Taylor, and T. F. Cootes. 1998. Interpreting Face Images Using Active Appearance Models. In Proceedings of the 3rd. International Conference on Face and Gesture Recognition (FG '98). IEEE Computer Society, 300--.
[16]
A. A. Efros and W. T. Freeman. 2001. Image Quilting for Texture Synthesis and Transfer. In Proc. SIGGRAPH. ACM, 341--346.
[17]
A. A. Efros and T. K. Leung. 1999. Texture Synthesis by Non-Parametric Sampling. In IEEE ICCV. 1033--.
[18]
G. Fyffe, A. Jones, O. Alexander, R. Ichikari, and P. Debevec. 2014. Driving high-resolution facial scans with video performance capture. ACM Trans. Graph. 34, 1 (2014), 8.
[19]
G. Fyffe, K. Nagano, L. Huynh, S. Saito, J. Busch, A. Jones, H. Li, and P. Debevec. 2017. Multi-View Stereo on Consistent Face Topology. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 295--309.
[20]
P. Garrido, L. Valgaerts, C. Wu, and C. Theobalt. 2013. Reconstructing Detailed Dynamic Face Geometry from Monocular Video. In ACM Trans. Graph., Vol. 32. 158:1--158:10.
[21]
L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shechtman. 2016. Preserving Color in Neural Artistic Style Transfer. CoRR abs/1606.05897 (2016).
[22]
L. A. Gatys, A. S. Ecker, and M. Bethge. 2015. Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. CoRR abs/1505.07376 (2015).
[23]
A. Ghosh, G. Fyffe, B. Tunwattanapong, J. Busch, X. Yu, and P. Debevec. 2011. Multiview Face Capture Using Polarized Spherical Gradient Illumination. ACM Trans. Graph. 30, 6, Article 129 (2011), 129:1--129:10 pages.
[24]
M. Glencross, G.J. Ward, F. Melendez, C.Jay, J. Liu, and R. Hubbold. 2008. A perceptually validated model for surface depth hallucination. ACM Trans. Graph. 27, 3 (2008), 59.
[25]
A. Golovinskiy, W. Matusik, H. Pfister, S. Rusinkiewicz, and T Funkhouser. 2006. A Statistical Model for Synthesis of Detailed Facial Geometry. ACM Trans. Graph. 25, 3 (2006), 1025--1034.
[26]
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 2672--2680.
[27]
P. F. Gotardo, T. Simon, Y. Sheikh, and I. Matthews. 2015. Photogeometric scene flow for high-detail dynamic 3d reconstruction. In Proc. ICCV. 846--854.
[28]
P. Graham, B. Tunwattanapong, J. Busch, X. Yu, A. Jones, P. Debevec, and A. Ghosh. 2013a. Measurement-Based Synthesis of Facial Microgeometry. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 335--344.
[29]
P. Graham, B. Tunwattanapong, J. Busch, X. Yu, A. Jones, P. Debevec, and A. Ghosh. 2013b. Measurement-based Synthesis of Facial Microgeometry. In EUROGRAPHICS.
[30]
J. Han, K. Zhou, L.-Y. Wei, M. Gong, H. Bao, X. Zhang, and B. Guo. 2006. Fast example-based surface texture synthesis via discrete optimization. The Visual Computer 22, 9--11 (2006), 918--925.
[31]
A. Haro, B. Guenterz, and I. Essay. 2001. Real-time, Photo-realistic, Physically Based Rendering of Fine Scale Human Skin Structure. In Eurographics Workshop on Rendering, S. J. Gortle and K. Myszkowski (Eds.).
[32]
L. Hu, S. Saito, L. Wei, K. Nagano, J. Seo, J. Fursund, I. Sadeghi, C. Sun, Y.-C. Chen, and H. Li. 2017. Avatar Digitization From a Single Image For Real-Time Rendering. ACM Trans. Graph. 36, 6 (2017).
[33]
A. E. Ichim, S. Bouaziz, and M. Pauly. 2015. Dynamic 3D Avatar Creation from Handheld Video Input. ACM Trans. Graph. 34, 4, Article 45 (2015), 45:1--45:14 pages.
[34]
S. Iizuka, E. Simo-Serra, and H. Ishikawa. 2017. Globally and Locally Consistent Image Completion. ACM Trans. Graph. 36, 4, Article 107 (2017), 107:1--107:14 pages.
[35]
P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. 2016. Image-to-image translation with conditional adversarial networks. arXiv:1611.07004 (2016).
[36]
M. K.Johnson, F. Cole, A. Raj, and E. H. Adelson. 2011. Microgeometry Capture using an Elastomeric Sensor. ACM Trans. Graph 30, 4 (2011), 46:1--46:8.
[37]
T. Karras, T. Aila, S. Laine, and J. Lehtinen. 2017. Progressive Growing of GANs for Improved Quality, Stability, and Variation. CoRR abs/1710.10196 (2017).
[38]
I. Kemelmacher-Shlizerman. 2013. Internet-based Morphable Model. IEEE ICCV (2013).
[39]
I. Kemelmacher-Shlizerman and R. Basri. 2011. 3D face reconstruction from a single image using a single reference face shape. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 2 (2011), 394--405.
[40]
I. Kemelmacher-Shlizerman and S. M. Seitz. 2011. Face reconstruction in the wild. In IEEE ICCV. IEEE, 1746--1753.
[41]
H. Kim, M. Zollhöfer, A. Tewari, J. Thies, C. Richardt, and C. Theobalt. 2018. Inverse-FaceNet: Deep Monocular Inverse Face Rendering. In Proc. CVPR.
[42]
D. P. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980 (2014).
[43]
T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. 2015. Deep Convolutional Inverse Graphics Network. In Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 2539--2547.
[44]
V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. 2005. Texture optimization for example-based synthesis. ACM Trans. Graph. 24, 3 (2005), 795--802.
[45]
V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. 2003. Graphcut Textures: Image and Video Synthesis Using Graph Cuts. In Proc. SIGGRAPH. ACM, 277--286.
[46]
M. S. Langer and S. W. Zucker. 1994. Shape-from-shading on a cloudy day. JOSA A 11, 2 (1994), 467--478.
[47]
A. Lasram and S. Lefebvre. 2012. Parallel patch-based texture synthesis. In Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-Performance Graphics. Eurographics Association, 115--124.
[48]
C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and others. 2016. Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802 (2016).
[49]
S. Lefebvre and H. Hoppe. 2006. Appearance-space texture synthesis. ACM Trans. Graph. 25, 3 (2006), 541--548.
[50]
C. Li, K. Zhou, and S. Lin. 2014. Intrinsic Face Image Decomposition with Human Face Priors. In Proc. ECCV (5)'14. 218--233.
[51]
H. Li, L. Trutoiu, K. Olszewski, L. Wei, T. Trutna, P.-L. Hsieh, A. Nicholls, A. Nicholls, and C. Ma. 2015. Facial Performance Sensing Head-Mounted Display. ACM Trans. Graph. 34, 4 (July 2015).
[52]
Y. Li, S. Liu, J. Yang, and M.-H. Yang. 2017. Generative Face Completion. In Proc. CVPR.
[53]
C. Liu, H.-Y. Shum, and W. T. Freeman. 2007. Face Hallucination: Theory and Practice. Int. J. Comput. Vision 75, 1 (2007), 115--134.
[54]
F. Liu, D. Zeng, J. Li, and Q.-j. Zhao. 2017. On 3D face reconstruction via cascaded regression in shape space. Frontiers of Information Technology & Electronic Engineering 18, 12(2017), 1978--1990.
[55]
Z. Liu, P. Luo, X. Wang, and X. Tang. 2015. Deep Learning Face Attributes in the Wild. In IEEE ICCV.
[56]
D.S. Ma, J. Correll, and B. Wittenbrink. 2015. The Chicago face database: A free stimulus set of faces and norming data. Behavior Research Methods 47, 4 (2015), 1122--1135.
[57]
W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec. 2007a. Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination. In Proc. EGSR 2007. Eurographics Association, 183--194.
[58]
W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec. 2007b. Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination. In Eurographics Symposium on Rendering.
[59]
W.-C. Ma, A. Jones, J.-Y. Chiang, T. Hawkins, S. Frederiksen, P. Peers, M. Vukovic, M. Ouhyoung, and P. Debevec. 2008. Facial Performance Synthesis Using Deformation-driven Polynomial Displacement Maps. In Proc. SIGGRAPH. ACM, 121:1--121:10.
[60]
I. Matthews and S. Baker. 2004. Active Appearance Models Revisited. Int. J. Comput. Vision 60, 2 (2004), 135--164.
[61]
S. McDonagh, M. Klaudiny, D. Bradley, T. Beeler, I. Matthews, and K. Mitchell. 2016. Synthetic prior design for real-time face tracking. In 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, 639--648.
[62]
U. Mohammed, S. J. D. Prince, and J. Kautz. 2009. Visio-lization: Generating Novel Facial Images. In ACM Trans. Graph. ACM, Article 57, 57:1--57:8 pages.
[63]
K. Nagano, G. Fyffe, O. Alexander, J. Barbič, H. Li, A. Ghosh, and P. Debevec. 2015. Skin Microstructure Deformation with Displacement Map Convolution. ACM Trans. Graph. 34, 4 (2015).
[64]
C. Nhan Duong, K. Luu, K. Gia Quach, and T. D. Bui. 2015. Beyond principal components: Deep boltzmann machines for face modeling. In Proc. CVPR. 4786--4794.
[65]
K. Olszewski, Z. Li, C. Yang, Y. Zhou, R. Yu, Z. Huang, S. Xiang, S. Saito, P. Kohli, and H. Li. 2017. Realistic Dynamic Facial Textures From a Single Image Using GANs. In IEEE ICCV.
[66]
K. Olszewski, J. J. Lim, S. Saito, and H. Li. 2016. High-Fidelity Facial and Speech Animation for VR HMDs. ACM Trans. Graph. 35, 6 (December 2016).
[67]
D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. 2016. Context encoders: Feature learning by inpainting. In Proc. CVPR. 2536--2544.
[68]
A. Radford, L. Metz, and S. Chintala. 2015. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. CoRR abs/1511.06434 (2015).
[69]
E. Richardson, M. Sela, and R. Kimmel. 2016. 3D face reconstruction by learning from synthetic data. In 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, 460--469.
[70]
E. Richardson, M. Sela, R. Or-El, and R. Kimmel. 2017. Learning detailed face reconstruction from a single image. In Proc. CVPR. IEEE, 5553--5562.
[71]
S. Romdhani and T. Vetter. 2005. Estimating 3D Shape and Texture Using Pixel Intensity, Edges, Specular Highlights, Texture Constraints and a Prior. In Proc. CVPR. 986--993.
[72]
S. Saito, T. Li, and H. Li. 2016. Real-Time Facial Segmentation and Performance Capture from RGB Input. In Proc. ECCV.
[73]
S. Saito, L. Wei, L. Hu, K. Nagano, and H. Li. 2017. Photorealistic Facial Texture Inference Using Deep Neural Networks. In Proc. CVPR.
[74]
M. Sela, E. Richardson, and R. Kimmel. 2017. Unrestricted facial geometry reconstruction using image-to-image translation. In IEEE ICCV. IEEE, 1585--1594.
[75]
S. Sengupta, A. Kanazawa, C. D. Castillo, and D. Jacobs. 2017. SfSNet: Learning Shape, Reflectance and Illuminance of Faces in the Wild. arXiv.1712.01261 (2017).
[76]
F. Shi, H.-T. Wu, X. Tong, and J. Chai. 2014. Automatic acquisition of high-fidelity facial performances using monocular videos. ACM Trans. Graph. 33, 6 (2014), 222.
[77]
Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shechtman, and D. Samaras. 2017. Neural Face Editing with Intrinsic Image Disentangling. arXiv:1704.04131 (2017).
[78]
Solid Angle. 2016. (2016). http://www.solidangle.com/arnold/.
[79]
S. Suwajanakorn, I. Kemelmacher-Shlizerman, and S. M. Seitz. 2014. Total moving face reconstruction. In Proc. ECCV. Springer, 796--812.
[80]
A. Tewari, M. Zollhöfer, P. Garrido, F. Bernard, H. Kim, P. Pérez, and C. Theobalt. 2017a. Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz. arXiv.1712.02859 (2017).
[81]
A. Tewari, M. Zollhöfer, H. Kim, P. Garrido, F. Bernard, P. Perez, and C. Theobalt. 2017b. Mofa: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In IEEE ICCV, Vol. 2.
[82]
The Digital Human League. 2015. Digital Emily 2.0. (2015). http://gl.ict.usc.edu/Research/DigitalEmily2/.
[83]
J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner. 2016a. Face2Face: Real-time Face Capture and Reenactment of RGB Videos. In Proc. CVPR.
[84]
J. Thies, M. Zollöfer, M. Stamminger, C. Theobalt, and M. Nießner. 2016b. FaceVR: Real-Time Facial Reenactment and Eye Gaze Control in Virtual Reality. arXiv:1610.03151 (2016).
[85]
M. Turk and A. Pentland. 1991. Eigenfaces for Recognition. J. Cognitive Neuroscience 3, 1 (1991), 71--86.
[86]
J. von der Pahlen, J. Jimenez, E. Danvoye, P. Debevec, G. Fyffe, and O. Alexander. 2014. Digital Ira and Beyond: Creating Real-time Photoreal Digital Actors. In ACM SIGGRAPH 2014 Courses. ACM, New York, NY, USA, Article 1, 1:1--1:384 pages.
[87]
L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. 2009. State of the art in example-based texture synthesis. In Eurographics 2009, State of the Art Report, EG-STAR. Eurographics Association, 93--117.
[88]
L.-Y. Wei and M. Levoy. 2000. Fast Texture Synthesis Using Tree-structured Vector Quantization. In Proc. SIGGRAPH. 479--488.
[89]
T. Weyrich, W. Matusik, H. Pfister, B. Bickel, C. Donner, C. Tu, J. McAndless, J. Lee, A. Ngan, H. W. Jensen, and M. Gross. 2006. Analysis of Human Faces using a Measurement-Based Skin Reflectance Model. ACM Trans. Graph. 25, 3 (2006), 1013--1024.
[90]
C. A. Wilson, A. Ghosh, P. Peers, J.-Y. Chiang, J. Busch, and P. Debevec. 2010. Temporal upsampling of performance geometry using photometric alignment. ACM Trans. Graph. 29, 2 (2010), 17.
[91]
C. Wu, D. Bradley, M. Gross, and T. Beeler. 2016. An anatomically-constrained local deformation model for monocular face capture. ACM Trans. Graph. 35, 4 (2016), 115.
[92]
R. A. Yeh*, C. Chen*, T. Y. Lim, S. A. G., M. Hasegawa-Johnson, and M. N. Do. 2017. Semantic Image Inpainting with Deep Generative Models. In Proc. CVPR. * equal contribution.
[93]
H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. 2017. Pyramid Scene Parsing Network. In Proc. CVPR.
[94]
J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman. 2017. Toward Multimodal Image-to-image Translation. In Advances in Neural Information Processing Systems 30.
[95]
X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. 2015. High-fidelity pose and expression normalization for face recognition in the wild. In Proc. CVPR. 787--796.

Cited By

View all
  • (2024)HQ3DAvatar: High-quality Implicit 3D Head AvatarACM Transactions on Graphics10.1145/364988943:3(1-24)Online publication date: 9-Apr-2024
  • (2024)Lite2Relight: 3D-aware Single Image Portrait RelightingACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657470(1-12)Online publication date: 13-Jul-2024
  • (2024)VRMM: A Volumetric Relightable Morphable Head ModelACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657406(1-11)Online publication date: 13-Jul-2024
  • Show More Cited By

Index Terms

  1. High-fidelity facial reflectance and geometry inference from an unconstrained image

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 37, Issue 4
    August 2018
    1670 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3197517
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 July 2018
    Published in TOG Volume 37, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. facial modeling
    2. image-based modeling
    3. texture synthesis and inpainting

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)71
    • Downloads (Last 6 weeks)5
    Reflects downloads up to 19 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)HQ3DAvatar: High-quality Implicit 3D Head AvatarACM Transactions on Graphics10.1145/364988943:3(1-24)Online publication date: 9-Apr-2024
    • (2024)Lite2Relight: 3D-aware Single Image Portrait RelightingACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657470(1-12)Online publication date: 13-Jul-2024
    • (2024)VRMM: A Volumetric Relightable Morphable Head ModelACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657406(1-11)Online publication date: 13-Jul-2024
    • (2024)Multi-level Attention Aggregation for Aesthetic Face Relighting2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)10.1109/WACV57701.2024.00401(4045-4054)Online publication date: 3-Jan-2024
    • (2024)ReLI-QA: A Multidimensional Quality Assessment Dataset for Relighted Human Heads2024 IEEE International Conference on Visual Communications and Image Processing (VCIP)10.1109/VCIP63160.2024.10849906(1-5)Online publication date: 8-Dec-2024
    • (2024)SPLiT: Single Portrait Lighting Estimation via a Tetrad of Face IntrinsicsIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2023.332845346:2(1079-1092)Online publication date: 1-Feb-2024
    • (2024)Makeup Prior Models for 3D Facial Makeup Estimation and Applications2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00211(2165-2175)Online publication date: 16-Jun-2024
    • (2024)MoSAR: Monocular Semi-Supervised Model for Avatar Reconstruction using Differentiable Shading2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00174(1770-1780)Online publication date: 16-Jun-2024
    • (2024)Monocular Identity-Conditioned Facial Reflectance Reconstruction2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00090(885-895)Online publication date: 16-Jun-2024
    • (2024)High-Quality Facial Geometry and Appearance Capture at Home2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00073(697-707)Online publication date: 16-Jun-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media