skip to main content
research-article

Metamolds: computational design of silicone molds

Published:30 July 2018Publication History
Skip Abstract Section

Abstract

We propose a new method for fabricating digital objects through reusable silicone molds. Molds are generated by casting liquid silicone into custom 3D printed containers called metamolds. Metamolds automatically define the cuts that are needed to extract the cast object from the silicone mold. The shape of metamolds is designed through a novel segmentation technique, which takes into account both geometric and topological constraints involved in the process of mold casting. Our technique is simple, does not require changing the shape or topology of the input objects, and only requires of-the-shelf materials and technologies. We successfully tested our method on a set of challenging examples with complex shapes and rich geometric detail.

Skip Supplemental Material Section

Supplemental Material

136-514.mp4

mp4

274.3 MB

a136-alderighi.mp4

mp4

246.6 MB

References

  1. Marco Attene. 2015. Shapes In a Box: Disassembling 3D Objects for Efficient Packing and Fabrication. Comput. Graph. Forum 34, 8 (Dec. 2015), 64--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. V. Babaei, J. Ramos, Y. Lu, G. Webster, and W. Matusik. 2017. FabSquare: Fabricating Photopolymer Objects by Mold 3D Printing and UV Curing. IEEE Computer Graphics and Applications 37, 3 (May 2017), 34--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amit H. Bermano, Thomas Funkhouser, and Szymon Rusinkiewicz. 2017. State of the Art in Methods and Representations for Fabrication-Aware Design. Comput. Graph. Forum 36, 2 (May 2017), 509--535. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. 2008. Reeb Graphs for Shape Analysis and Applications. Theor. Comput. Sci. 392, 1--3 (Feb. 2008), 5--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Yuri Boykov, Olga Veksler, and Ramin Zabih. 2001. Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 11 (Nov. 2001), 1222--1239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Tim Bruckner, Zach Oat, and Ruben Procopio. 2010. Pop sculpture. Watson-Guptill Publications.Google ScholarGoogle Scholar
  7. Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. 1997. Geodesic Active Contours. Int. J. Comput. Vision 22, 1 (Feb. 1997), 61--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Pritam Chakraborty and N. Venkata Reddy. 2009. Automatic determination of parting directions, parting lines and surfaces for two-piece permanent molds. Journal of Materials Processing Technology 209, 5 (2009), 2464 -- 2476.Google ScholarGoogle ScholarCross RefCross Ref
  9. Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. 2009. A Benchmark for 3D Mesh Segmentation. ACM Trans. Graph. 28, 3, Article 73 (July 2009), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qixing Huang, Bedrich Benes, Daniel Cohen-Or, and Baoquan Chen. 2015. Dapper: Decompose-and-pack for 3D Printing. ACM Trans. Graph. 34, 6, Article 213 (Oct. 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ernest P De Garmo, J Temple Black, and Ronald A Kohser. 2011. DeGarmo's materials and processes in manufacturing. John Wiley & Sons.Google ScholarGoogle Scholar
  12. Andrew Delong, Anton Osokin, Hossam N. Isack, and Yuri Boykov. 2012. Fast Approximate Energy Minimization with Label Costs. Int. J. Comput. Vision 96, 1 (Jan. 2012), 1--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Tamal K. Dey, Fengtao Fan, and Yusu Wang. 2013. An Efficient Computation of Handle and Tunnel Loops via Reeb Graphs. ACM Trans. Graph. 32, 4, Article 32 (July 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gurobi Optimization, Inc. 2016. Gurobi Optimizer Reference Manual. (2016). http://www.gurobi.comGoogle ScholarGoogle Scholar
  15. Philipp Herholz, Wojciech Matusik, and Marc Alexa. 2015. Approximating Free-form Geometry with Height Fields for Manufacturing. Comput. Graph. Forum 34, 2 (May 2015), 239--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. 2014. Approximate Pyramidal Shape Decomposition. ACM Trans. Graph. 33, 6, Article 213 (Nov. 2014), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Alec Jacobson. 2017. Generalized Matryoshka: Computational Design of Nesting Objects. Comput. Graph. Forum 36, 5 (Aug. 2017), 27--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D Mesh Segmentation and Labeling. ACM Trans. Graph. 29, 4, Article 102 (July 2010), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson Surface Reconstruction. ACM Trans. Graph. 32, 3, Article 29 (July 2013), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Benjamin Keinert, Matthias Innmann, Michael Sänger, and Marc Stamminger. 2015. Spherical Fibonacci Mapping. ACM Trans. Graph. 34, 6, Article 193 (Oct. 2015), 7 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Alan C. Lin and Nguyen Huu Quang. 2014. Automatic generation of mold-piece regions and parting curves for complex CAD models in multi-piece mold design. Computer-Aided Design 57 (2014), 15 -- 28.Google ScholarGoogle ScholarCross RefCross Ref
  22. O. Litany, E. Rodolà, A. M. Bronstein, M. M. Bronstein, and D. Cremers. 2016. Non-Rigid Puzzles. Comput. Graph. Forum 35, 5 (Aug. 2016), 135--143.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ligang Liu, Ariel Shamir, Charlie Wang, and Emily Whitening. 2014. 3D Printing Oriented Design: Geometry and Optimization. In SIGGRAPH Asia 2014 Courses (SA '14). ACM, New York, NY, USA, Article 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012. Chopper: Partitioning Models into 3D-printable Parts. ACM Trans. Graph. 31, 6, Article 129 (Nov. 2012), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Luigi Malomo, Nico Pietroni, Bernd Bickel, and Paolo Cignoni. 2016. FlexMolds: Automatic Design of Flexible Shells for Molding. ACM Trans. Graph. 35, 6, Article 223 (Nov. 2016), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Mortara, G. Patanè, M. Spagnuolo, B. Falcidieno, and J. Rossignac. 2004. Plumber: A Method for a Multi-scale Decomposition of 3D Shapes into Tubular Primitives and Bodies. In Proc. of the 9th ACM Symposium on Solid Modeling and Applications (SM '04). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 339--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame Fields: Anisotropic and Non-orthogonal Cross Fields. ACM Trans. Graph. 33, 4, Article 134 (July 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Guodong Rong and Tiow-Seng Tan. 2006. Jump Flooding in GPU with Applications to Voronoi Diagram and Distance Transform. In Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games (I3D '06). ACM, New York, NY, USA, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ariel Shamir. 2008. A survey on Mesh Segmentation Techniques. Computer Graphics Forum (2008).Google ScholarGoogle Scholar
  30. L. Shapira, S. Shalom, A. Shamir, D. Cohen-Or, and H. Zhang. 2010. Contextual Part Analogies in 3D Objects. Int. J. Comput. Vision 89, 2--3 (Sept. 2010), 309--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Oana Sidi, Oliver van Kaick, Yanir Kleiman, Hao Zhang, and Daniel Cohen-Or. 2011. Unsupervised Co-segmentation of a Set of Shapes via Descriptor-space Spectral Clustering. ACM Trans. Graph. 30, 6, Article 126 (Dec. 2011), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Robert W. Sumner and Jovan Popović. 2004. Deformation Transfer for Triangle Meshes. ACM Trans. Graph. 23, 3 (Aug. 2004), 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Nobuyuki Umetani, Bernd Bickel, and Wojciech Matusik. 2015. Computational Tools for 3D Printing. In ACM SIGGRAPH 2015 Courses (SIGGRAPH '15). ACM, New York, NY, USA, Article 9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Vanek, J. A. Garcia Galicia, B. Benes, R. Mźch, N. Carr, O. Stava, and G. S. Miller. 2014. PackMerger: A 3D Print Volume Optimizer. Comput. Graph. Forum 33, 6 (Sept. 2014), 322--332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Somlak Wannarumon. 2011. Reviews of Computer-Aided Technologies for Jewelry Design and Casting. Naresuan University Engineering Journal 6, 1 (2011), 45--56.Google ScholarGoogle Scholar
  36. Chunjie Zhang, Xionghui Zhou, and Congxin Li. 2010. Feature extraction from freeform molded parts for moldability analysis. The International Journal of Advanced Manufacturing Technology 48, 1 (01 Apr 2010), 273--282.Google ScholarGoogle ScholarCross RefCross Ref
  37. Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2005. Feature-based Surface Parameterization and Texture Mapping. ACM Trans. Graph. 24, 1 (Jan. 2005), 1--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrangements for Solid Geometry. ACM Trans. Graph. 35, 4, Article 39 (July 2016), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Song Chun Zhu and Alan Yuille. 1996. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18, 9 (Sept. 1996), 884--900. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Metamolds: computational design of silicone molds

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 37, Issue 4
      August 2018
      1670 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3197517
      Issue’s Table of Contents

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 July 2018
      Published in tog Volume 37, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader