skip to main content
10.1145/3205455.3205607acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

A taxonomy of methods for visualizing pareto front approximations

Published:02 July 2018Publication History

ABSTRACT

In multiobjective optimization, many techniques are used to visualize the results, ranging from traditional general-purpose data visualization techniques to approaches tailored to the specificities of multiobjective optimization. The number of specialized approaches rapidly grows in the recent years. To assist both the users and developers in this field, we propose a taxonomy of methods for visualizing Pareto front approximations. It builds on the nature of the visualized data and the properties of visualization methods rather than on the employed visual representations. It covers the methods for visualizing individual approximation sets resulting from a single algorithm run as well as multiple approximation sets produced in repeated runs. The proposed taxonomy categories are characterized and illustrated with selected examples of visualization methods. We expect that proposed taxonomy will be insightful to the multiobjective optimization community, make the communication among the participants easier and help focus further development of visualization methods.

References

  1. G. Agrawal, C. L. Bloebaum, and K. Lewis. 2005. Intuitive design selection using visualized n-dimensional Pareto frontier. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. American Institute of Aeronautics and Astronautics, 1813:1--1813:14.Google ScholarGoogle Scholar
  2. G. Agrawal, K. Lewis, K. Chugh, C.-H. Huang, S. Parashar, and C. L. Bloebaum. 2004. Intuitive visualization of Pareto frontier for multi-objective optimization in n-dimensional performance space. In Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American Institute of Aeronautics and Astronautics, 4434:1--4434:11.Google ScholarGoogle Scholar
  3. K. H. Ang, G. Chong, and Y. Li. 2002. Visualization technique for analyzing non-nominated set comparison. In Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, SEAL'02, Singapore. Nanyang Technological University, 36--40.Google ScholarGoogle Scholar
  4. S. Bandaru, A. H. C. Ng, and K. Deb. 2017. Data mining methods for knowledge discovery in multi-objective optimization: Part A - Survey. Expert Systems with Applications 70 (2017), 139--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. X. Bi and B. Li. 2012. The visualization decision-making model of four objectives based on the balance of space vector. In Proceedings of the 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, Vol. 2. 365--368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. X. Blasco, J. M. Herrero, J. Sanchis, and M. Martínez. 2008. A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences 178, 20 (2008), 3908--3924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. X. Blasco, G. Reynoso-Meza, E. A. Sánchez Pérez, and J. V. Sánchez Pérez. 2016. Asymmetric distances to improve n-dimensional Pareto fronts graphical analysis. Information Sciences 340--341 (2016), 228--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Branke, K. Deb, H. Dierolf, and M. Oswald. 2004. Finding knees in multi-objective optimization. In Proceedings of the 8th International Conference on Parallel Problem Solving from Nature, PPSN VIII. 722--731.Google ScholarGoogle Scholar
  9. D. Brockhoff, A. Auger, N. Hansen, and T. Tušar. 2017. Quantitative performance assessment of multiobjective optimizers: The average runtime attainment function. In Proceedings of the 9th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2017. 103--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P.-W. Chiu and C. Bloebaum. 2010. Hyper-radial visualization (HRV) method with range-based preferences for multi-objective decision making. Structural and Multidisciplinary Optimization 40, 1-6 (2010), 97--115.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. R. R. de Freitas, P.J. Fleming, and F. G. Guimarães. 2015. Aggregation trees for visualization and dimension reduction in many-objective optimization. Information Sciences 298 (2015), 288--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf. 2006. Real-Time Volume Graphics. A. K. Peters, Natick, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. M. Everson and J. E. Fieldsend. 2006. Multi-class ROC analysis from a multi-objective optimisation perspective. Pattern Recognition Letters 27, 8 (2006), 918--927. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. E. Fieldsend and R. M. Everson. 2013. Visualising high-dimensional Pareto relationships in two-dimensional scatterplots. In Proceedings of the 7th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2013. 558--572.Google ScholarGoogle ScholarCross RefCross Ref
  15. C. M. Fonseca and P. J. Fleming. 1996. On the performance assessment and comparison of stochastic multiobjective optimizers. In Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, PPSN IV. 584--593. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. V. D. Grunert da Fonseca, C. M. Fonseca, and A. O. Hall. 2001. Inferential performance assessment of stochastic optimisers and the attainment function. In Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, EMO 2001. 213--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. P. Guerreiro, C. M. Fonseca, and L. Paquete. 2016. Greedy hypervolume subset selection in low dimensions. Evolutionary Computation 24, 3 (2016), 521--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Z. He and G. G. Yen. 2016. Visualization and performance metric in many-objective optimization. IEEE Transactions on Evolutionary Computation 20, 3 (2016), 386--402.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. E. Hoffman, G. G. Grinstein, K. Marx, I. Grosse, and E. Stanley. 1997. DNA visual and analytic data mining. In Proceedings of the IEEE Conference on Visualization. IEEE, 437--441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Ibrahim, S. Rahnamayan, M. V. Martin, and K. Deb. 2016. 3D-RadVis: Visualization of Pareto front in many-objective optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2016. 736--745.Google ScholarGoogle Scholar
  21. A. Inselberg. 2009. Parallel Coordinates: Visual Multidimensional Geometry and its Applications. Springer, New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Kehrer and H. Hauser. 2013. Visualization and visual analysis of multifaceted scientific data: A survey. IEEE Transactions on Visualization and Computer Graphics 19, 3 (2013), 495--513. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Knowles. 2005. A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In Proceedings of the 5th International Conference on Intelligent Systems Design and Applications, ISDA '05. IEEE, 552--557. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. Kohonen. 2001. Self-Organizing Maps. Springer-Verlag, Berlin, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. H. Koochaksaraei, I. R. Meneghini, V. N. Coelho, and F. G. Guimarães. 2017. A new visualization method in many-objective optimization with chord diagram and angular mapping. Knowledge-Based Systems 138 (2017), 134--154.Google ScholarGoogle ScholarCross RefCross Ref
  26. M. Köppen and K. Yoshida. 2007. Visualization of Pareto-sets in evolutionary multi-objective optimization. In Proceedings of the 7th International Conference on Hybrid Intelligent Systems, HIS 2007. IEEE, 156--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. F. Kudo and T. Yoshikawa. 2012. Knowledge extraction in multi-objective optimization problem based on visualization of Pareto solutions. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2012. IEEE, 1--6.Google ScholarGoogle Scholar
  28. M. López-Ibáñez, L. Paquete, and T. Stützle. 2010. Exploratory analysis of stochastic local search algorithms in biobjective optimization. In Experimental Methods for the Analysis of Optimization Algorithms. Springer, 209--222.Google ScholarGoogle Scholar
  29. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev. 2004. Interactive Decision Maps: Approximation and Visualization of Pareto Frontier. Kluwer Academic Publishers, Boston, MA, USA.Google ScholarGoogle Scholar
  30. D. Lowe and M. E. Tipping. 1996. Feed-forward neural networks and topographic mappings for exploratory data analysis. Neural Computing & Applications 4, 2 (1996), 83--95.Google ScholarGoogle ScholarCross RefCross Ref
  31. K. V. Mardia and P. E. Jupp. 2008. Directional Statistics. John Wiley & Sons, Inc.Google ScholarGoogle Scholar
  32. D. P. Mitchell. 1987. Generating antialiased images at low sampling densities. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987. ACM, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. Obayashi and D. Sasaki. 2003. Visualization and data Mining of Pareto solutions using self-organizing map. In Proceedings of the 2nd International Conference on Evolutionary Multi-Criterion Optimization, EMO 2003. 796--809. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. L. Pinheiro, D. Landa-Silva, and J. Atkin. 2015. Analysis of objectives relationships in multiobjective problems using trade-off region maps. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2015. 735--742. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Pryke, S. Mostaghim, and A. Nazemi. 2007. Heatmap visualisation of population based multi objective algorithms. In Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007. 361--375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. W. Sammon. 1969. A nonlinear mapping for data structure analysis. IEEE Trans. Comput. C-18, 5 (1969), 401--409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. B. Shneiderman. 1996. The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings of the IEEE Symposium on Visual Languages. IEEE, 336--343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. B. Tenenbaum, V. de Silva, and J. C. Langford. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290, 5500 (2000), 2319--2323.Google ScholarGoogle ScholarCross RefCross Ref
  39. M. Tory and T. Möller. 2004. Rethinking visualization: A high-level taxonomy. In Proceedings of the 10th IEEE Symposium on Information Visualization, InfoVis 2004. 151--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. K. Trawinski, M. Chica, D. P. Pancho, S. Damas, and O. Cordón. 2018. moGrams: A network-based methodology for visualizing the set of non-dominated solutions in multiobjective optimization. IEEE Transactions on Cybernetics 48, 2 (2018), 474--485.Google ScholarGoogle ScholarCross RefCross Ref
  41. T. Tušar and B. Filipič. 2014. Visualizing exact and approximated 3D empirical attainment functions. Mathematical Problems in Engineering 2014 (2014), 18. Article ID 569346.Google ScholarGoogle ScholarCross RefCross Ref
  42. T. Tušar and B. Filipič. 2015. Visualization of Pareto front approximations in evolutionary multiobjective optimization: A critical review and the prosection method. IEEE Transactions on Evolutionary Computation 19, 2 (2015), 225--245.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. T. Tušar and B. Filipič. 2016. Showing the knee of a 4-D Pareto front approximation via different visualization methods. In Proceedings of the 19th International Multiconference Information Society, IS 2016, Vol. A. 52--55.Google ScholarGoogle Scholar
  44. J. Valdés and A. Barton. 2007. Visualizing high dimensional objective spaces for multi-objective optimization: A virtual reality approach. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2007. IEEE, 4199--4206.Google ScholarGoogle Scholar
  45. D. J. Walker. 2015. Visualising multi-objective populations with treemaps. In Companion Material Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '15. ACM, 963--970. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. D. J. Walker, R. M. Everson, and J. E. Fieldsend. 2010. Visualisation and ordering of many-objective populations. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010. IEEE, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  47. D. J. Walker, R. M. Everson, and J. E. Fieldsend. 2013. Visualizing mutually nondominating solution sets in many-objective optimization. IEEE Transactions on Evolutionary Computation 17, 2 (2013), 165--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. J. W. Wallis, T. R. Miller, C. A. Lerner, and E. C. Kleerup. 1989. Three-dimensional display in nuclear medicine. IEEE Transactions on Medical Imaging 8, 4 (1989), 297--230.Google ScholarGoogle ScholarCross RefCross Ref
  49. A. T. A. Wood. 1994. Simulation of the von Mises Fisher distribution. Communications in Statistics - Simulation and Computation 23, 1 (1994), 157--164.Google ScholarGoogle ScholarCross RefCross Ref
  50. M. Yamamoto, T. Yoshikawa, and T. Furuhashi. 2010. Study on effect of MOGA with interactive island model using visualization. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010. IEEE, 1--6.Google ScholarGoogle Scholar

Index Terms

  1. A taxonomy of methods for visualizing pareto front approximations

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          GECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference
          July 2018
          1578 pages
          ISBN:9781450356183
          DOI:10.1145/3205455

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 July 2018

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,669of4,410submissions,38%

          Upcoming Conference

          GECCO '24
          Genetic and Evolutionary Computation Conference
          July 14 - 18, 2024
          Melbourne , VIC , Australia

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader