skip to main content
10.1145/3205651.3208273acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Performance improvements of evolutionary algorithms in perl 6

Published: 06 July 2018 Publication History

Abstract

Perl 6 is a recently released language that belongs to the Perl family but was actually designed from scratch, not as a refactoring of the Perl 5 codebase. Through its two-year-old (released) history, it has increased performance by several orders of magnitude, arriving recently to the point where it can be safely used in production. In this paper, we are going to compare the historical and current performance of Perl 6 in a single problem, OneMax, to those of other interpreted languages; besides, we will also use implicit concurrency and see what kind of performance and scaling can we expect from it.

References

[1]
Doina Bucur, Giovanni Iacca, Marco Gaudesi, Giovanni Squillero, and Alberto Tonda. 2016. Optimizing groups of colluding strong attackers in mobile urban communication networks with evolutionary algorithms. Applied Soft Computing 40 (2016), 416--426.
[2]
Hossam Faris, Ibrahim Aljarah, Seyedali Mirjalili, Pedro A. Castillo, and Juan J. Merelo. 2016. EvoloPy: An Open-source Nature-inspired Optimization Framework in Python. In Proceedings of the 8th International Joint Conference on Computational Intelligence, TJCCI2016, Volume 1: ECTA, Porto, Portugal, November 9--11, 2016., Juan Julián Merelo Guervós, Fernando Melício, José Manuel Cadenas, António Dourado, Kurosh Madani, António E. Ruano, and Joaquim Filipe (Eds.). SciTePress, 171--177.
[3]
Félix-Antoine Fortin, De Rainville, Marc-André Gardner Gardner, Marc Parizeau, Christian Gagné, et al. 2012. DEAP: Evolutionary algorithms made easy. The Journal of Machine Learning Research 13, 1 (2012), 2171--2175.
[4]
Ivick Guerra-Gomez, Esteban Tlelo-Cuautle, and Luis Gerardo de la Fraga. 2015. OCBA in the yield optimization of analog integrated circuits by evolutionary algorithms. In Circuits and Systems (ISCAS), 2015 IEEE International Symposium on. IEEE, 1933--1936.
[5]
Juan Julián Merelo Guervós, Israel Biancas-Alvarez, Pedro A. Castillo, Gustavo Romero, Pablo García-Sánchez, Víctor M. Rivas, Mario García Valdez, Amaury Hernández-Águila, and Mario Román. 2017. Ranking Programming Languages for Evolutionary Algorithm Operations. In Applications of Evolutionary Computation - 20th European Conference, EvoApplications 2017, Amsterdam, The Netherlands, April 19--21, 2017, Proceedings, Part I (Lecture Notes in Computer Science), Giovanni Squillero and Kevin Sim (Eds.), Vol. 10199. 689--704.
[6]
Masatoshi Hidaka, Ken Miura, and Tatsuya Harada. 2017. Development of JavaScript-based deep learning platform and application to distributed training. arXiv preprint arXiv.1702.01846 (2017).
[7]
Javier Maestro-Montojo, Sancho Salcedo-Sanz, and Juan J. Merelo Guervós. 2014. New solver and optimal anticipation strategies design based on evolutionary computation for the game of MasterMind. Evolutionary Intelligence 6, 4 (2014), 219--228.
[8]
J. J. Merelo. 2002. Evolutionary Computation in Perl. In YAPC::Europe::2002, Münich Perl Mongers (Ed.). 2--22.
[9]
Juan-Julián Merelo. 2010. A Perl primer for evolutionary algorithm practitioners. SIGEVOlution 4, 4(2010), 12--19.
[10]
Juan J. Merelo, Pedro A. Castillo, Israel Blancas, Gustavo Romero, Pablo García-Sánchez, Antonio Fernández-Ares, Víctor M. Rivas, and Mario García Valdez. 2016. Benchmarking Languages for Evolutionary Algorithms. In Applications of Evolutionary Computation - 19th European Conference, EvoApplications 2016, Porto, Portugal, March 30 - April 1, 2016, Proceedings, Part II (Lecture Notes in Computer Science), Giovanni Squillero and Paolo Burelli (Eds.), Vol. 9598. Springer, 27--41.
[11]
Juan-Julián Merelo-Guervós, Pedro-A. Castillo, and Enrique Alba. 2010. Algorithm:: Evolutionary, a flexible Perl module for evolutionary computation. Soft Computing 14, 10 (2010), 1091--1109. Accesible at http://sl.ugr.es/000K.
[12]
Juan-Julián Merelo-Guervós, Pedro-A. Castillo-Valdivieso, Antonio Mora-García, Anna Esparcia-Alcázar, and Víctor-Manuel Rivas-Santos. 2014. NodEO, a multi-paradigm distributed evolutionary algorithm platform in JavaScript. In Genetic and Evolutionary Computation Conference, GECCO '14, Vancouver, BC, Canada, July 12--16, 2014, Companion Material Proceedings, Dirk V. Arnold and Enrique Alba (Eds.). ACM, 1155--1162.
[13]
Juan-Julián Merelo-Guervós, Gustavo Romero, Maribel García-Arenas, Pedro A. Castillo, Antonio-Miguel Mora, and Juan-Luís Jiménez-Laredo. 2011. Implementation Matters: Programming Best Practices for Evolutionary Algorithms. In IWANN (2) (Lecture Notes in Computer Science), Joan Cabestany, Ignacio Rojas, and Gonzalo Joya Caparrós (Eds.), Vol. 6692. Springer, 333--340.
[14]
Melanie Mitchell, Stephanie Forrest, and John H Holland. 1992. The royal road for genetic algorithms: Fitness landscapes and GA performance. In Proceedings of the first european conference on artificial life. 245--254.
[15]
Victor M Rivas, Juan Julián Merelo Guervós, Gustavo Romero López, Maribel Arenas-García, and Antonio M Mora. 2014. An Object-Oriented Library in JavaScript to Build Modular and Flexible Cross-Platform Evolutionary Algorithms. In Applications of Evolutionary Computation. Springer, 853--862.
[16]
David Ruano-Ordás, Florentino Fdez-Riverola, and José R Méndez. 2018. Using evolutionary computation for discovering spam patterns from e-mail samples. Information Processing & Management 54, 2 (2018), 303--317.
[17]
Audrey Tang. 2007. Perl 6: Reconciling the Irreconcilable. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '07). ACM, New York, NY, USA, 1--1.
[18]
Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The design and implementation of typed scheme. ACM SIGPLAN Notices 43, 1 (2008), 395--406.

Cited By

View all
  • (2024)Green Evolutionary Algorithms and JavaScript: A Study on Different Software and Hardware ArchitecturesSoftware Technologies10.1007/978-3-031-61753-9_1(1-18)Online publication date: 24-May-2024
  • (2020)Implementation matters, also in concurrent evolutionary algorithmsProceedings of the 2020 Genetic and Evolutionary Computation Conference Companion10.1145/3377929.3398120(1591-1598)Online publication date: 8-Jul-2020

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference Companion
July 2018
1968 pages
ISBN:9781450357647
DOI:10.1145/3205651
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 July 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. benchmarking
  2. computer languages
  3. concurrency
  4. evolutionary algorithms
  5. perl
  6. perl 6

Qualifiers

  • Research-article

Funding Sources

Conference

GECCO '18
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Green Evolutionary Algorithms and JavaScript: A Study on Different Software and Hardware ArchitecturesSoftware Technologies10.1007/978-3-031-61753-9_1(1-18)Online publication date: 24-May-2024
  • (2020)Implementation matters, also in concurrent evolutionary algorithmsProceedings of the 2020 Genetic and Evolutionary Computation Conference Companion10.1145/3377929.3398120(1591-1598)Online publication date: 8-Jul-2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media