skip to main content
10.1145/3208159.3208166acmotherconferencesArticle/Chapter ViewAbstractPublication PagescgiConference Proceedingsconference-collections
research-article

gSMOOTH: A Gradient based Spatial and Temporal Method of Depth Image Enhancement

Published:11 June 2018Publication History

ABSTRACT

The depth images from RGB-D cameras contain a substantial amount of artifacts such as holes and flickering. Moreover, for fast moving objects in successive frames, we perceive ghosting artifacts on the depth images. Hence, the poor quality of the depth images limits them to be used in various applications. Here, we propose a gradient based spatial and temporal method of depth enhancement (gSMOOTH) using least median of squares, which deals with these artifacts. For each depth pixel over a sequence of frames, we look for invalid or unstable or drastically changed depth values and use our approach to replace those values with stable and more feasible depth values. Our approach removes the ghosting artifacts and flickering, and attenuates the amount of temporal noise significantly in real time. We conduct experiments with our own- and reference datasets and evaluate our method against reference methods. Experimental results show improvements for both static and dynamic scenes.

References

  1. Abdenour Amamra and Nabil Aouf. 2014. GPU-based real-time RGBD data filtering. Journal of Real-Time Image Processing (2014), 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Razmik Avetisyan, Christian Rosenke, Martin Luboschik, and Oliver Staadt. 2016. Temporal Filtering of Depth Images using Optical Flow. In 24th WSCG'16.Google ScholarGoogle Scholar
  3. S. Beck, A. Kunert, A. Kulik, and B. Froehlich. 2013. Immersive Group-to-Group Telepresence. IEEE Transactions on Visualization and Computer Graphics 19, 4 (April 2013), 616--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Massimo Camplani, Tomas Mantecon, and Luis Salgado. 2013. Depth-color fusion strategy for 3-d scene modeling with kinect. IEEE Transactions on Cybernetics 43, 6 (2013), 1560--1571.Google ScholarGoogle ScholarCross RefCross Ref
  5. Massimo Camplani and Luis Salgado. 2012. Efficient spatiotemporal hole filling strategy for Kinect depth maps. In Proc. SPIE, Vol. 8290. 82900E--82900E--10.Google ScholarGoogle Scholar
  6. Li Chen, Hui Lin, and Shutao Li. 2012. Depth image enhancement for Kinect using region growing and bilateral filter. In 21st International Conference on Pattern Recognition. 3070--3073.Google ScholarGoogle Scholar
  7. J Dolson, Jongmin Baek, C Plagemann, and S Thrun. 2010. Up-sampling Range Data in Dynamic Environments. In IEEE Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  8. Mingsong Dou and H. Fuchs. 2014. Temporally enhanced 3D capture of room-sized dynamic scenes with commodity depth cameras. In IEEE Virtual Reality (VR). 39--44.Google ScholarGoogle Scholar
  9. F. Garcia, D. Aouada, T. Solignac, B. Mirbach, and B. Ottersten. 2013. Real-time depth enhancement by fusion for RGB-D cameras. Computer Vision, IET 7, 5 (October 2013), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  10. Kaiming He, Jian Sun, and Xiaoou Tang. 2010. Guided Image Filtering. In 11th European Conference on Computer Vision (ECCV), Springer Berlin Heidelberg. 1--14.Google ScholarGoogle Scholar
  11. Tak-Wai Hui and King Ngi Ngan. 2014. Motion-Depth: RGB-D Depth Map Enhancement with Motion and Depth in Complement. In IEEE CVPR. 3962--3969. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. B. M. T. Islam, C. Scheel, R. Pajarola, and O. Staadt. 2015. Depth Image Enhancement using 1D Least Median of Squares. In Computer Graphics International (CGI'15).Google ScholarGoogle Scholar
  13. A. B. M. T. Islam, C. Scheel, R. Pajarola, and O. Staadt. 2015. Robust enhancement of depth images from Kinect sensor. In 2015 IEEE Virtual Reality (VR). 197--198.Google ScholarGoogle Scholar
  14. A. B. M. T. Islam, Christian Scheel, Renato Pajarola, and Oliver Staadt. 2017. Robust enhancement of depth images from depth sensors. Computers & Graphics 68, Supplement C (2017), 53--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kourosh Khoshelham and Er Oude Elberink. 2012. Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 12, 2 (2012), 1437--1454.Google ScholarGoogle ScholarCross RefCross Ref
  16. Sung-Yeol Kim, J.-H. Cho, A. Koschan, and M.A. Abidi. 2010. Spatial and Temporal Enhancement of Depth Images Captured by a Time-of-Flight Depth Sensor. In 20th International Conference on Pattern Recognition (ICPR). 2358--2361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Bor-Shing Lin, Mei-Ju Su, Po-Hsun Cheng, Po-Jui Tseng, and Sao-Jie Chen. 2015. Temporal and Spatial Denoising of Depth Maps. Sensors 15, 8 (2015), 18506--18525.Google ScholarGoogle ScholarCross RefCross Ref
  18. Junyi Liu, Xiaojin Gong, and Jilin Liu. 2012. Guided inpainting and filtering for Kinect depth maps. In 21st International Conference on Pattern Recognition (ICPR). 2055--2058.Google ScholarGoogle Scholar
  19. Andrew Maimone, Jonathan Bidwell, Kun Peng, and Henry Fuchs. 2012. Enhanced personal autostereoscopic telepresence system using commodity depth cameras. Computers & Graphics 36, 7 (2012), 791--807. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Andrew Maimone and Henry Fuchs. 2011. Encumbrance-free telepresence system with real-time 3D capture and display using commodity depth cameras. In 10th IEEE ISMAR. 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sergey Matyunin, Dmitriy Vatolin, Yury Berdnikov, and Michail Smirnov. 2011. Temporal filtering for depth maps generated by kinect depth camera. In 3DTV Conference. 1--4.Google ScholarGoogle Scholar
  22. Middlebury Datasets. 2013. http://vision.middlebury.edu/stereo/data/. Accessed: 16-01-2018.Google ScholarGoogle Scholar
  23. Simone Milani and Giancarlo Calvagno. 2016. Correction and interpolation of depth maps from structured light infrared sensors. Signal Processing: Image Communication 41 (2016), 28--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C.V. Nguyen, S. Izadi, and D. Lovell. 2012. Modeling Kinect Sensor Noise for Improved 3D Reconstruction and Tracking. In 2nd International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT). 524--530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Fei Qi, Junyu Han, Pengjin Wang, Guangming Shi, and Fu Li. 2013. Structure Guided Fusion for Depth Map Inpainting. Pattern Recognition Letter 34, 1 (Jan. 2013), 70--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Christian Richardt, Carsten Stoll, Neil A. Dodgson, Hans-Peter Seidel, and Christian Theobalt. 2012. Coherent Spatiotemporal Filtering, Upsampling and Rendering of RGBZ Videos. Computer Graphics Forum 31, 2 (2012), 247--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Peter J Rousseeuw. 1984. Least median of squares regression. Journal of the American statistical association 79, 388 (1984), 871--880.Google ScholarGoogle ScholarCross RefCross Ref
  28. P. J. Rousseeuw and A. M. Leroy. 1987. Robust Regression and Outlier Detection. John Wiley & Sons, Inc., New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. L. Sheng and K. N. Ngan. 2013. Depth enhancement based on hybrid geometric hole filling strategy. In IEEE ICIP. 2173--2176.Google ScholarGoogle Scholar
  30. Zhongyuan Wang, Jinhui Hu, ShiZheng Wang, and Tao Lu. 2015. Trilateral Constrained Sparse Representation for Kinect Depth Hole Filling. Pattern Recognition Letter 65, C (2015), 95--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Wasza, S. Bauer, and J. Hornegger. 2011. Real-time preprocessing for dense 3-D range imaging on the GPU: Defect interpolation, bilateral temporal averaging and guided filtering. In International Conference on Computer Vision Workshops. 1221--1227.Google ScholarGoogle Scholar
  32. J. Yang, X. Ye, K. Li, C. Hou, and Y. Wang. 2014. Color-Guided Depth Recovery From RGB-D Data Using an Adaptive Autoregressive Model. IEEE Transactions on Image Processing 23, 8 (Aug 2014), 3443--3458.Google ScholarGoogle ScholarCross RefCross Ref
  33. Qingxiong Yang, N. Ahuja, Ruigang Yang, Kar-Han Tan, J. Davis, B. Culbertson, J. Apostolopoulos, and Gang Wang. 2013. Fusion of Median and Bilateral Filtering for Range Image Upsampling. IEEE Transactions on Image Processing 22, 12 (Dec 2013), 4841--4852. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. You Yang, Qiong Liu, Rongrong Ji, and Yue Gao. 2012. Dynamic 3D Scene Depth Reconstruction via Optical Flow Field Rectification. Public Library of Science 7, 11 (2012), e47041.Google ScholarGoogle Scholar
  35. L. Zhang, P. Shen, S. Zhang, J. Song, and G. Zhu. 2016. Depth enhancement with improved exemplar-based inpainting and joint trilateral guided filtering. In IEEE ICIP. 4102--4106.Google ScholarGoogle Scholar
  36. Jiejie Zhu, Liang Wang, Ruigang Yang, and J. Davis. 2008. Fusion of time-of-flight depth and stereo for high accuracy depth maps. In IEEE CVPR. 1--8.Google ScholarGoogle Scholar

Index Terms

  1. gSMOOTH: A Gradient based Spatial and Temporal Method of Depth Image Enhancement

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          CGI 2018: Proceedings of Computer Graphics International 2018
          June 2018
          284 pages
          ISBN:9781450364010
          DOI:10.1145/3208159

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 June 2018

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          CGI 2018 Paper Acceptance Rate35of159submissions,22%Overall Acceptance Rate35of159submissions,22%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader