skip to main content
10.1145/3209978.3210041acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
research-article

Neural Query Performance Prediction using Weak Supervision from Multiple Signals

Published: 27 June 2018 Publication History

Abstract

Predicting the performance of a search engine for a given query is a fundamental and challenging task in information retrieval. Accurate performance predictors can be used in various ways, such as triggering an action, choosing the most effective ranking function per query, or selecting the best variant from multiple query formulations. In this paper, we propose a general end-to-end query performance prediction framework based on neural networks, called NeuralQPP. Our framework consists of multiple components, each learning a representation suitable for performance prediction. These representations are then aggregated and fed into a prediction sub-network. We train our models with multiple weak supervision signals, which is an unsupervised learning approach that uses the existing unsupervised performance predictors using weak labels. We also propose a simple yet effective component dropout technique to regularize our model. Our experiments on four newswire and web collections demonstrate that NeuralQPP significantly outperforms state-of-the-art baselines, in nearly every case. Furthermore, we thoroughly analyze the effectiveness of each component, each weak supervision signal, and all resulting combinations in our experiments.

References

[1]
N. Asadi, D. Metzler, T. Elsayed, and J. Lin . 2011. Pseudo Test Collections for Learning Web Search Ranking Functions Proc. SIGIR. 1073--1082.
[2]
J. A. Aslam and V. Pavlu . 2007. Query Hardness Estimation Using Jensen-Shannon Divergence Among Multiple Scoring Functions Proc. ECIR. 198--209.
[3]
L. Azzopardi, M. de Rijke, and K. Balog . 2007. Building Simulated Queries for Known-item Topics: An Analysis Using Six European Languages Proc. SIGIR. 455--462.
[4]
J. G. C. de Souza, H. Zamani, M. Negri, M. Turchi, and D. Falavigna . 2015. Multitask Learning for Adaptive Quality Estimation of Automatically Transcribed Utterances Proc. NAACL. 714--724.
[5]
D. Carmel and E. Yom-Tov . 2010. Estimating the Query Difficulty for Information Retrieval (bibinfoedition1st ed.). Morgan and Claypool Publishers.
[6]
C. L. A. Clarke, N. Craswell, and E. M. Voorhees . 2012. Overview of the TREC 2012 Web Track. In Proc. TREC.
[7]
D. Cohen, J. Foley, H. Zamani, J. Allan, and W. B. Croft . 2018. Universal Approximation Functions for Fast Learning to Rank Proc. SIGIR. (to appear).
[8]
G. V. Cormack, M. D. Smucker, and C. L. A. Clarke . 2011. Efficient and Effective Spam Filtering and Re-ranking for Large Web Datasets. Inf. Retr., Vol. 14, 5 (Oct. . 2011).
[9]
W. B. Croft and D. J. Harper . 1979. Using Probabilistic Models of Document Retrieval Without Relevance Information. J. Doc., Vol. 35, 4 (1979), 285--295.
[10]
W. B. Croft, D. Metzler, and T. Strohman . 2009. Search Engines: Information Retrieval in Practice (bibinfoedition1st ed.). Addison-Wesley Publishing Company.
[11]
S. Cronen-Townsend, Y. Zhou, and W. B. Croft . 2002. Predicting Query Performance. In Proc. SIGIR. 299--306.
[12]
S. Cronen-Townsend, Y. Zhou, and W. B. Croft . 2006. Precision Prediction Based on Ranked List Coherence. Inf. Retr., Vol. 9, 6 (Dec. . 2006), 723--755.
[13]
J. S. Culpepper, C. L. A. Clarke, and J. Lin . 2016. Dynamic Cutoff Prediction in Multi-Stage Retrieval Systems Proc. ADCS. 17--24.
[14]
R. Cummins, J. Jose, and C. O'Riordan . 2011. Improved Query Performance Prediction Using Standard Deviation Proc. SIGIR. 1089--1090.
[15]
M. Dehghani, A. Severyn, S. Rothe, and J. Kamps . 2017 a. Avoiding Your Teacher's Mistakes: Training Neural Networks with Controlled Weak Supervision. CoRR Vol. abs/1711.00313 (2017).
[16]
M. Dehghani, H. Zamani, A. Severyn, J. Kamps, and W. B. Croft . 2017 b. Neural Ranking Models with Weak Supervision. In Proc. SIGIR. 65--74.
[17]
F. Diaz . 2007. Performance Prediction Using Spatial Autocorrelation Proc. SIGIR. 583--590.
[18]
C. Hauff, D. Hiemstra, and F. de Jong . 2008. A Survey of Pre-retrieval Query Performance Predictors Proc. CIKM. 1419--1420.
[19]
J. He, M. Larson, and M. de Rijke . 2008. Using Coherence-based Measures to Predict Query Difficulty Proc. ECIR. 689--694.
[20]
K. J"arvelin and J. Kek"al"ainen . 2002. Cumulated Gain-based Evaluation of IR Techniques. ACM Trans. Inf. Syst. Vol. 20, 4 (Oct. . 2002), 422--446.
[21]
D. P. Kingma and J. Ba . 2015. Adam: A Method for Stochastic Optimization. In Proc. ICLR.
[22]
O. Kurland, A. Shtok, D. Carmel, and S. Hummel . 2011. A Unified Framework for Post-retrieval Query-performance Prediction Proc. ICTIR. 15--26.
[23]
V. Lavrenko and W. B. Croft . 2001. Relevance Based Language Models. In Proc. SIGIR. 120--127.
[24]
H. Li . 2011. Learning to Rank for Information Retrieval and Natural Language Processing. Morgan & Claypool Publishers.
[25]
X. Lu, A. Moffat, and J. S. Culpepper . 2016. The effect of pooling and evaluation depth on IR metrics. Inf. Retr., Vol. 19, 4 (2016), 416--445.
[26]
C. Luo, Y. Zheng, J. Mao, Y. Liu, M. Zhang, and S. Ma . 2017. Training Deep Ranking Model with Weak Relevance Labels Proc. ADC. 205--216.
[27]
J. Mackenzie, J. S. Culpepper, R. Blanco, M. Crane, C. L. A. Clarke, and J. Lin . 2018. Query Driven Algorithm Selection in Early Stage Retrieval. Proc. WSDM. 396--404.
[28]
D. Metzler and W. B. Croft . 2005. A Markov Random Field Model for Term Dependencies. Proc. SIGIR. 472--479.
[29]
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean . 2013. Distributed Representations of Words and Phrases and their Compositionality Proc. NIPS. 3111--3119.
[30]
J. Mothe and L. Tanguy . 2004. Linguistic Features to Predict Query Difficulty. Proc. SIGIR Workshop on predicting Query Difficulty - Methods and Applications.
[31]
M. Negri, M. Turchi, J. G. C. de Souza, and D. Falavigna . 2014. Quality Estimation for Automatic Speech Recognition Proc. COLING. 1813--1823.
[32]
G. Pass, A. Chowdhury, and C. Torgeson . 2006. A Picture of Search Proc. InfoScale.
[33]
J. Pennington, R. Socher, and C. D. Manning . 2014. GloVe: Global Vectors for Word Representation. In Proc. EMNLP. 1532--1543.
[34]
J. Pérez-Iglesias and L. Araujo . 2010. Standard Deviation As a Query Hardness Estimator. Proc. SPIRE. 207--212.
[35]
J. M. Ponte and W. B. Croft . 1998. A Language Modeling Approach to Information Retrieval Proc. SIGIR. 275--281.
[36]
F. Raiber and O. Kurland . 2014. Query-performance Prediction: Setting the Expectations Straight Proc. SIGIR. 13--22.
[37]
J. J. Rocchio . 1971. Relevance Feedback in Information Retrieval. The SMART Retrieval System - Experiments in Automatic Document Processing. Prentice Hall.
[38]
H. Roitman . 2017. An Enhanced Approach to Query Performance Prediction Using Reference Lists Proc. SIGIR. 869--872.
[39]
H. Roitman, S. Erera, O. Sar-Shalom, and B. Weiner . 2017 b. Enhanced Mean Retrieval Score Estimation for Query Performance Prediction Proc. ICTIR. 35--42.
[40]
H. Roitman, S. Erera, and B. Weiner . 2017 a. Robust Standard Deviation Estimation for Query Performance Prediction Proc. ICTIR. 245--248.
[41]
D. E. Rumelhart, G. E. Hinton, and R. J. Williams . 1986. Learning Representations by Back-propagating Errors. Nature Vol. 323 (1986), 533--536.
[42]
A. Shtok, O. Kurland, and D. Carmel . 2010. Using Statistical Decision Theory and Relevance Models for Query-performance Prediction Proc. SIGIR. 259--266.
[43]
A. Shtok, O. Kurland, and D. Carmel . 2016. Query Performance Prediction Using Reference Lists. ACM Trans. Inf. Syst. Vol. 34, 4 (June . 2016), 19:1--19:34.
[44]
A. Shtok, O. Kurland, D. Carmel, F. Raiber, and G. Markovits . 2012. Predicting Query Performance by Query-Drift Estimation. ACM Trans. Inf. Syst. Vol. 30, 2 (May . 2012).
[45]
L. Specia, M. Turchi, N. Cancedda, M. Dymetman, and N. Cristianini . 2009. Estimating the Sentence-Level Quality of Machine Translation Systems Proc. EAMT. 28--37.
[46]
Y. Tao and S. Wu . 2014. Query Performance Prediction By Considering Score Magnitude and Variance Together Proc. CIKM. 1891--1894.
[47]
P. Thomas, F. Scholer, P. Bailey, and A. Moffat . 2017. Tasks, Queries, and Rankers in Pre-Retrieval Performance Prediction Proc. ADCS. 11:1--11:4.
[48]
C. J. van Rijsbergen . 1979. Information Retrieval (bibinfoedition2nd ed.). Butterworth-Heinemann, Newton, MA, USA.
[49]
V. Vinay, I. J. Cox, N. Milic-Frayling, and K. Wood . 2006. On Ranking the Effectiveness of Searches. In Proc. SIGIR. 398--404.
[50]
H. Zamani and W. B. Croft . 2017. Relevance-based Word Embedding. In Proc. SIGIR. 505--514.
[51]
H. Zamani, J. Dadashkarimi, A. Shakery, and W. B. Croft . 2016. Pseudo-Relevance Feedback Based on Matrix Factorization Proc. CIKM. 1483--1492.
[52]
H. Zamani, M. Dehghani, F. Diaz, H. Li, and N. Craswell . 2018 a. SIGIR 2018 Workshop on Learning from Limited or Noisy Data for Information Retrieval Proc. SIGIR. (to appear).
[53]
H. Zamani, B. Mitra, X. Song, N. Craswell, and S. Tiwary . 2018 b. Neural Ranking Models with Multiple Document Fields Proc. WSDM. 700--708.
[54]
C. Zhai and J. Lafferty . 2001. Model-based Feedback in the Language Modeling Approach to Information Retrieval Proc. CIKM. 403--410.
[55]
C. Zhai and J. Lafferty . 2004. A Study of Smoothing Methods for Language Models Applied to Information Retrieval. ACM Trans. Inf. Syst. Vol. 22, 2 (April . 2004), 179--214.
[56]
Y. Zhou and W. B. Croft . 2006. Ranking Robustness: A Novel Framework to Predict Query Performance Proc. CIKM. 567--574.
[57]
Y. Zhou and W. B. Croft . 2007. Query Performance Prediction in Web Search Environments Proc. SIGIR. 543--550.

Cited By

View all
  • (2025)A contrastive neural disentanglement approach for query performance predictionMachine Learning10.1007/s10994-025-06752-x114:4Online publication date: 25-Feb-2025
  • (2025)Robust query performance prediction for dense retrievers via adaptive disturbance generationMachine Learning10.1007/s10994-024-06659-z114:3Online publication date: 6-Feb-2025
  • (2024)Coherence-based Query Performance Measures for Dense RetrievalProceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3664190.3672518(15-24)Online publication date: 2-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGIR '18: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval
June 2018
1509 pages
ISBN:9781450356572
DOI:10.1145/3209978
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 June 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. deep learning
  2. neural networks
  3. quality estimation
  4. query performance prediction
  5. weak supervision

Qualifiers

  • Research-article

Conference

SIGIR '18
Sponsor:

Acceptance Rates

SIGIR '18 Paper Acceptance Rate 86 of 409 submissions, 21%;
Overall Acceptance Rate 792 of 3,983 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)26
  • Downloads (Last 6 weeks)3
Reflects downloads up to 02 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)A contrastive neural disentanglement approach for query performance predictionMachine Learning10.1007/s10994-025-06752-x114:4Online publication date: 25-Feb-2025
  • (2025)Robust query performance prediction for dense retrievers via adaptive disturbance generationMachine Learning10.1007/s10994-024-06659-z114:3Online publication date: 6-Feb-2025
  • (2024)Coherence-based Query Performance Measures for Dense RetrievalProceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3664190.3672518(15-24)Online publication date: 2-Aug-2024
  • (2024)Utilizing BERT for Information Retrieval: Survey, Applications, Resources, and ChallengesACM Computing Surveys10.1145/364847156:7(1-33)Online publication date: 14-Feb-2024
  • (2024)Generalized Weak Supervision for Neural Information RetrievalACM Transactions on Information Systems10.1145/364763942:5(1-26)Online publication date: 27-Apr-2024
  • (2024)Optimization Methods for Personalizing Large Language Models through Retrieval AugmentationProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657783(752-762)Online publication date: 10-Jul-2024
  • (2024)Improving Performance of Neural IR Models by Using a Keyword-Extraction-Based Weak-Supervision MethodIEEE Access10.1109/ACCESS.2024.338219012(46851-46863)Online publication date: 2024
  • (2024)Query Performance Prediction: From Fundamentals to Advanced TechniquesAdvances in Information Retrieval10.1007/978-3-031-56069-9_51(381-388)Online publication date: 23-Mar-2024
  • (2024)Estimating Query Performance Through Rich Contextualized Query RepresentationsAdvances in Information Retrieval10.1007/978-3-031-56066-8_6(49-58)Online publication date: 15-Mar-2024
  • (2023)Noisy Perturbations for Estimating Query Difficulty in Dense RetrieversProceedings of the 32nd ACM International Conference on Information and Knowledge Management10.1145/3583780.3615270(3722-3727)Online publication date: 21-Oct-2023
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media