skip to main content
10.1145/3216122.3216127acmotherconferencesArticle/Chapter ViewAbstractPublication PagesideasConference Proceedingsconference-collections
research-article

A framework for the decomposition and features extraction from lung DICOM images

Published: 18 June 2018 Publication History

Abstract

Extracting morphological features from DICOM images is useful to obtain numerical anatomic values for population-wide studies. Currently software tools on medical devices are able to extract some parameters that can indicate the presence of diseases. Nevertheless, there still is a lot of not exploited information contained in images which can be useful for research as well as to characterize human behavior. For instance, measures for lung volume compared with reference data sets can be studied starting from clinical images.
In this paper we report preliminary results on a framework for the acquisition and decomposition of DICOM images applied on a dataset containing lung exams from which we extracted information and parameters useful for disease research studies. The here proposed algorithms for images segmentation and anatomical features extraction have been tested on a clinical dataset obtained from University Hospital of Catanzaro, providing the framework validity.

References

[1]
U. Bashir, G. Azad, M. M. Siddique, S. Dhillon, N. Patel, P. Bassett, D. Landau, V. Goh, and G. Cook. The effects of segmentation algorithms on the measurement of18F-FDG PET texture parameters in non-small cell lung cancer. EJNMMI Res, 7(1):60, Dec 2017.
[2]
C. H. Chen, C. K. Chang, C. Y. Tu, W. C. Liao, B. R. Wu, K. T. Chou, Y. R. Chiou, S. N. Yang, G. Zhang, and T. C. Huang. Radiomic features analysis in computed tomography images of lung nodule classification. PLoS ONE, 13(2):e0192002, 2018.
[3]
P. Cinaglia, P. Veltri, and M. Cannataro. emiro: an ontology-based system for clinical data integration and analysis. In SEBD, 2017.
[4]
S. Echegaray, S. Bakr, D. L. Rubin, and S. Napel. Quantitative Image Feature Engine (QIFE): an Open-Source, Modular Engine for 3D Quantitative Feature Extraction from Volumetric Medical Images. J Digit Imaging, Oct 2017.
[5]
K. Edmunds, M. Gislason, S. Sigur?sson, V. Gu?nason, T. Harris, U. Carraro, and P. Gargiulo. Advanced quantitative methods in correlating sarcopenic muscle degeneration with lower extremity function biometrics and comorbidities. PLoS ONE, 13(3):e0193241, 2018.
[6]
N. Garg, M. Wang, E. Hyde, R. R. da Silva, A. V. Melnik, I. Protsyuk, A. Bouslimani, Y. W. Lim, R. Wong, G. Humphrey, G. Ackermann, T. Spivey, S. S. Brouha, N. Bandeira, G. Y. Lin, F. Rohwer, D. J. Conrad, T. Alexandrov, R. Knight, and P. C. Dorrestein. Three-Dimensional Microbiome and Metabolome Cartography of a Diseased Human Lung. Cell Host Microbe, 22(5):705--716, Nov 2017.
[7]
E. Gouillart, J. Nunez-Iglesias, and S. van der Walt. Analyzing microtomography data with Python and the scikit-image library. Adv Struct Chem Imaging, 2(1):18, 2017.
[8]
S. Hamidian, B. Sahiner, N. Petrick, and A. Pezeshk. 3D Convolutional Neural Network for Automatic Detection of Lung Nodules in Chest CT. Proc SPIE Int Soc Opt Eng, 10134, 2017.
[9]
W. A. Kalender. X-ray computed tomography. Physics in Medicine and Biology, 51(13):R29, 2006.
[10]
H. Kamata, N. Higashihori, H. Fukuoka, M. Shiga, T. Kawamoto, and K. Moriyama. Comprehending the three-dimensional mandibular morphology of facial asymmetry patients with mandibular prognathism. Prog Orthod, 18(1):43, Dec 2017.
[11]
M. Larobina and L. Murino. Medical image file formats. J Digit Imaging, 27(2):200--206, Apr 2014.
[12]
Q. Li, J. Kim, Y. Balagurunathan, J. Qi, Y. Liu, K. Latifi, E. G. Moros, M. B. Schabath, Z. Ye, R.J. Gillies, and T.J. Dilling. CT imaging features associated with recurrence in non-small cell lung cancer patients after stereotactic body radiotherapy. Radiat Oncol, 12(1):158, Sep 2017.
[13]
W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163--169, Aug. 1987.
[14]
H. Lusic and M. W. Grinstaff. X-ray-computed tomography contrast agents. Chem. Rev., 113(3):1641--1666, Mar 2013.
[15]
D. Mason. SuâĂŘeâĂŘtâĂŘ33: Pydicom: An open source dicom library. Medical Physics, 38(6Part10):3493--3493, 2011.
[16]
R. Palomar, F. A. Cheikh, B. Edwin, A. Beghdadhi, and O. J. Elle. Surface reconstruction for planning and navigation of liver resections. Comput Med Imaging Graph, 53:30--42, Oct 2016.
[17]
T. E. Reeves, P. Mah, and W. D. McDavid. Deriving Hounsfield units using grey levels in cone beam CT: a clinical application. Dentomaxillofac Radiol, 41(6):500--508, Sep 2012.
[18]
J. Y. Rho, D. A. Lynch, Y. J. Suh, J. W. Nah, J. A. Zach, J. D. Schroeder, C. W. Cox, R. P. Bowler, B. E. Fenster, M. T. Dransfield, J. M. Wells, J. E. Hokanson, D. Curran-Everett, A. Williams, M. K. Han, J. D. Crapo, and E. K. Silverman. CT measurements of central pulmonary vasculature as predictors of severe exacerbation in COPD. Medicine (Baltimore), 97(3):e9542, Jan 2018.
[19]
R. Smith-Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. Berrington de Gonzalez, and D. L. Miglioretti. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. Intern. Med., 169(22):2078--2086, Dec 2009.
[20]
M. d. S. G. Tsuzuki, A. K. Sato, E. K. Ueda, T. d. C. Martins, R. Y. Takimoto, Y. Iwao, L. I. Abe, T. Gotoh, and S. Kagei. Propagation-based marching cubes algorithm using open boundary loop. The Visual Computer, Jul 2017.
[21]
S. van der Walt, J. L. Schonberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu. scikit-image: image processing in Python. Peer J, 2:e453, 2014.
[22]
P. Vizza, P. H. Guzzi, P. Veltri, A. Papa, G. L. Cascini, G. Sesti, and E. Succurro. Experiences on quantitative cardiac pet analysis. 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 1148--1153, 2016.
[23]
S. v. d. Walt, S. C. Colbert, and G. Varoquaux. The numpy array: A structure for efficient numerical computation. Computing in Science and Engg., 13(2):22--30, Mar. 2011.
[24]
P. Xiao, X. Zhao, S. Leng, R. S. Tan, P. Wong, and L. Zhong. A Software Tool for Heart AVJ Motion Tracking Using Cine Cardiovascular Magnetic Resonance Images. IEEE J Transl Eng Health Med, 5:1900412, 2017.

Cited By

View all
  • (2024) IMPatienT: An I ntegrated Web Application to Digitize, Process and Explore M ultimodal PATIEN t da T a Journal of Neuromuscular Diseases10.3233/JND-23008511:4(855-870)Online publication date: 29-Apr-2024
  • (2024)A Lightweight Method for Designing and Massive Processing of Genomics PipelinesIEEE Access10.1109/ACCESS.2024.346486712(168245-168255)Online publication date: 2024
  • (2024)Quantum Computing for BioinformaticsReference Module in Life Sciences10.1016/B978-0-323-95502-7.00182-2Online publication date: 2024
  • Show More Cited By

Index Terms

  1. A framework for the decomposition and features extraction from lung DICOM images

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    IDEAS '18: Proceedings of the 22nd International Database Engineering & Applications Symposium
    June 2018
    328 pages
    ISBN:9781450365277
    DOI:10.1145/3216122
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    In-Cooperation

    • Concordia University: Concordia University

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 18 June 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. DICOM
    2. decomposition
    3. image slices

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    IDEAS 2018

    Acceptance Rates

    Overall Acceptance Rate 74 of 210 submissions, 35%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)6
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024) IMPatienT: An I ntegrated Web Application to Digitize, Process and Explore M ultimodal PATIEN t da T a Journal of Neuromuscular Diseases10.3233/JND-23008511:4(855-870)Online publication date: 29-Apr-2024
    • (2024)A Lightweight Method for Designing and Massive Processing of Genomics PipelinesIEEE Access10.1109/ACCESS.2024.346486712(168245-168255)Online publication date: 2024
    • (2024)Quantum Computing for BioinformaticsReference Module in Life Sciences10.1016/B978-0-323-95502-7.00182-2Online publication date: 2024
    • (2024)Time Series Analysis and Forecasting for Epidemiology and Pandemic SurveillanceReference Module in Life Sciences10.1016/B978-0-323-95502-7.00133-0Online publication date: 2024
    • (2024)A Survey for Extraction, Classification and Security of Medical Image DataInformation Systems and Technological Advances for Sustainable Development10.1007/978-3-031-75329-9_9(79-84)Online publication date: 3-Dec-2024
    • (2024)A Method for Inferring Candidate Disease-Disease AssociationsComputational Science – ICCS 202410.1007/978-3-031-63772-8_8(97-104)Online publication date: 28-Jun-2024
    • (2023)Liver injury associated with high value of D-dimer plasmatic level in COVID-19 patientsMinerva Gastroenterology10.23736/S2724-5985.22.03189-869:1Online publication date: Feb-2023
    • (2023)A method for modelling and executing customized pipelines in serverless computing2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)10.1109/BIBM58861.2023.10385856(3453-3458)Online publication date: 5-Dec-2023
    • (2023)A Flexible Automated Pipeline Engine for Transcript-Level Quantification from RNA-seqAdvances in Conceptual Modeling10.1007/978-3-031-22036-4_5(45-54)Online publication date: 1-Jan-2023
    • (2022)Evaluating the Quality of Patient-Specific Deformable Image Registration in Adaptive Radiotherapy Using a Digitally Enhanced Head and Neck PhantomApplied Sciences10.3390/app1219949312:19(9493)Online publication date: 22-Sep-2022
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media