skip to main content
10.1145/3218176.3218225acmconferencesArticle/Chapter ViewAbstractPublication PagespascConference Proceedingsconference-collections
research-article

Extreme Computing for Extreme Adaptive Optics: The Key to Finding Life Outside our Solar System

Published: 02 July 2018 Publication History

Abstract

The real-time correction of telescopic images in the search for exoplanets is highly sensitive to atmospheric aberrations. The pseudo-inverse algorithm is an efficient mathematical method to filter out these turbulences. We introduce a new partial singular value decomposition (SVD) algorithm based on QR-based Diagonally Weighted Halley (QDWH) iteration for the pseudo-inverse method of adaptive optics. The QDWH partial SVD algorithm selectively calculates the most significant singular values and their corresponding singular vectors. We develop a high performance implementation and demonstrate the numerical robustness of the QDWH-based partial SVD method. We also perform a benchmarking campaign on various generations of GPU hardware accelerators and compare against the state-of-the-art SVD implementation SGESDD from the MAGMA library. Numerical accuracy and performance results are reported using synthetic and real observational datasets from the Subaru telescope. Our implementation outperforms SGESDD by up to fivefold and fourfold performance speedups on ill-conditioned synthetic matrices and real observational datasets, respectively. The pseudo-inverse simulation code will be deployed on-sky for the Subaru telescope during observation nights scheduled early 2018.

References

[1]
{n. d.}. The Extrasolar Planets Encyclopaedia. http://exoplanet.eu/. ({n. d.}). Accessed: 2017-12-26.
[2]
A. Abdelfattah, E. Gendron, D. Gratadour, D. E. Keyes, H. Ltaief, A. Sevin, and F. Vidal. 2014. High Performance Pseudo-analytical Simulation of Multi-Object Adaptive Optics over Multi-GPU Systems. In Euro-Par 2014 Parallel Processing, Fernando Silva, Inês Dutra, and Vítor Santos Costa (Eds.). Lecture Notes in Computer Science, Vol. 8632. Springer International Publishing, 704--715.
[3]
S. Abdullah, H. Ltaief, Y. Sun, M. Genton, and D. E. Keyes. 2017. ExaGeoStat: A High Performance Unified Framework for Geostatistics on Manycore Systems. Submitted to the IEEE Trans. Parallel Distrib. Syst. (2017).
[4]
E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek, and S. Tomov. 2009. Numerical Linear Algebra on Emerging Architectures: The PLASMA and MAGMA Projects. Journal of Physics: Conference Series 180 (2009).
[5]
E. Anderson, Z. Bai, C. Bischof, S. L. Blackford, J. W. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen. 1999. LAPACK User's Guide (3 ed.). Society for Industrial and Applied Mathematics, Philadelphia.
[6]
G. Anglada-Escudé, P. J. Amado, J. Barnes, Z. M. Berdiñas, R. P. Butler, G. A.L. Coleman, I. de La Cueva, S. Dreizler, M. Endl, B. Giesers, et al. 2016. A Terrestrial Planet Candidate in a Temperate Orbit Around Proxima Centauri. Nature 536, 7617 (2016), 437--440.
[7]
T. Auckenthaler, V. Blum, H. J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B. Lang, H. Lederer, and P. R. Willems. 2011. Parallel Solution of Partial Symmetric Eigenvalue Problems from Electronic Structure Calculations. Parallel Comput. 37, 12 (2011), 783--794.
[8]
H. W. Babcock. 1953. The Possibility of Compensating Astronomical Seeing. Publications of the Astronomical Society of the Pacific 65, 386 (1953), 229--236.
[9]
J. M. Beckers. 1993. Adaptive Optics for Astronomy: Principles, Performance, and Applications. Annual review of astronomy and astrophysics 31, 1 (1993), 13--62.
[10]
C. H. Bischof, B. Lang, and X. Sun. 2000. Algorithm 807: The SBR Toolbox-Software for Successive Band Reduction. ACM Trans. Math. Software 26, 4 (2000), 602--616.
[11]
A. Charara, H. Ltaief, D. Gratadour, D. E. Keyes, A. Sevin, A. Abdelfattah, E. Gendron, C. Morel, and F. Vidal. 2014. Pipelining Computational Stages of the Tomographic Reconstructor for Multi-Object Adaptive Optics on a Multi-GPU System. In International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2014, New Orleans, LA, USA, November 16-21, 2014, Trish Damkroger and Jack J. Dongarra (Eds.). IEEE Computer Society, 262--273. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7012142; http://dl.acm.org/citation.cfm?id=2683593
[12]
É. Gendron, A. Charara, A. Abdelfattah, D. Gratadour, D. E. Keyes, H. Ltaief, C. Morel, F. Vidal, A. Sevin, and G. Rousset. 2014. A Novel Fast and Accurate Pseudo-Analytical Simulation Approach for MOAO. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9148. Article 91486L, 6 pages.
[13]
M. Gillon, A. H.M.J. Triaud, B.-O. Demory, E. Jehin, E. Agol, K. M. Deck, S. M. Lederer, J. De Wit, A. Burdanov, J. G. Ingalls, et al. 2017. Seven Temperate Terrestrial Planets Around the Nearby Ultracool Dwarf Star TRAPPIST-1. Nature 542, 7642 (2017), 456--460.
[14]
G. H. Golub and C. F. Van Loan. 1996. Matrix Computations (third ed.). Johns Hopkins University Press, Baltimore, Maryland.
[15]
O. Guyon. 2005. Limits of Adaptive Optics for High-Contrast Imaging. The Astrophysical Journal 629, 1 (2005), 592.
[16]
A. Haidar, H. Ltaief, and J. J. Dongarra. 2011. Parallel Reduction to Condensed Forms for Symmetric Eigenvalue Problems Using Aggregated Fine-Grained and Memory-Aware Kernels. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11). ACM, New York, NY, USA, Article 8, 11 pages.
[17]
A. Haidar, H. Ltaief, P. Luszczek, and J. Dongarra. 2012. A Comprehensive Study of Task Coalescing for Selecting Parallelism Granularity in a Two-Stage Bidiagonal Reduction. In IEEE 26th International Parallel and Distributed Processing Symposium. 25--35.
[18]
J. W. Hardy. 1998. Adaptive Optics for Astronomical Telescopes. Vol. 16. Oxford University Press on Demand.
[19]
N. Jovanovic, F. Martinache, O. Guyon, C. Clergeon, G. Singh, T. Kudo, V. Garrel, K. Newman, D. Doughty, J. Lozi, J. Males, Y. Minowa, Y. Hayano, N. Takato, J. Morino, J. Kuhn, E. Serabyn, B. Norris, P. Tuthill, G. Schworer, P. Stewart, L. Close, E. Huby, G. Perrin, S. Lacour, L. Gauchet, S. Vievard, N. Murakami, F. Oshiyama, N. Baba, T. Matsuo, J. Nishikawa, M. Tamura, O. Lai, F. Marchis, G. Duchene, T. Kotani, and J. Woillez. 2015. The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales. PASP 127 (Sept. 2015), 890. arXiv:astro-ph.IM/1507.00017
[20]
A-M Lagrange, M Bonnefoy, G Chauvin, D Apai, D Ehrenreich, A Boccaletti, D Gratadour, D Rouan, D Mouillet, S Lacour, et al. 2010. A giant planet imaged in the disk of the young star β Pictoris. Science 329, 5987 (2010), 57--59.
[21]
H. Ltaief, D. Gratadour, A. Charara, and E. Gendron. 2016. Adaptive Optics Simulation for the World's Largest Telescope on Multicore Architectures with Multiple GPUs. In Proceedings of the Platform for Advanced Scientific Computing Conference (PASC '16). ACM, New York, NY, USA, Article 9, 12 pages.
[22]
H. Ltaief, P. Luszczek, and J. J. Dongarra. 2012. Enhancing Parallelism of Tile Bidiagonal Transformation on Multicore Architectures Using Tree Reduction. Springer Berlin Heidelberg, Berlin, Heidelberg, 661--670.
[23]
P. Luszczek, H. Ltaief, and J. J. Dongarra. 2011. Two-Stage Tridiagonal Reduction for Dense Symmetric Matrices Using Tile Algorithms on Multicore Architectures. In Proc. 25th IEEE International Symposium on Parallel and Distributed Processing (25th IPDPS'11). IEEE Computer Society, Anchorage, Alaska, USA, 944--955.
[24]
C. Marois, B. Macintosh, T. Barman, B. Zuckerman, I. Song, J. Patience, D. Lafrenière, and R. Doyon. 2008. Direct Imaging of Multiple Planets Orbiting the Star HR 8799. Science 322, 5906 (2008), 1348--1352.
[25]
Y. Nakatsukasa and N. J. Higham. 2013. Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric Eigenvalue Decomposition and the SVD. SIAM J. Scientific Computing 35, 3 (2013).
[26]
NVIDIA. 2018. The NVIDIA CUDA Basic Linear Algebra Subroutines. https://developer.nvidia.com/cublas/. (2018).
[27]
F. Roddier. 1999. Adaptive Aptics in Astronomy. Cambridge university press.
[28]
D. Sukkari, H. Ltaief, and D. E. Keyes. 2016. A High Performance QDWH-SVD Solver Using Hardware Accelerators. ACM Trans. Math. Softw 43, 1 (2016), 6:1--6:25.
[29]
R. K. Tyson. 2015. Principles of Adaptive Optics. CRC press.

Cited By

View all
  • (2023)Task-Based Polar Decomposition Using SLATE on Massively Parallel Systems with Hardware AcceleratorsProceedings of the SC '23 Workshops of the International Conference on High Performance Computing, Network, Storage, and Analysis10.1145/3624062.3624248(1680-1687)Online publication date: 12-Nov-2023
  • (2023)High-Performance SVD Partial Spectrum ComputationProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3581784.3607109(1-12)Online publication date: 12-Nov-2023
  • (2022)A review on the selection criteria for the truncated SVD in Data Science applicationsJournal of Computational Mathematics and Data Science10.1016/j.jcmds.2022.1000645(100064)Online publication date: Dec-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
PASC '18: Proceedings of the Platform for Advanced Scientific Computing Conference
July 2018
92 pages
ISBN:9781450358910
DOI:10.1145/3218176
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 July 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Adaptive Optics
  2. Computational Astronomy
  3. GPU Computations
  4. Partial SVD
  5. Pseudo-Inverse Calculation
  6. QDWH

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

PASC '18
Sponsor:

Acceptance Rates

PASC '18 Paper Acceptance Rate 8 of 17 submissions, 47%;
Overall Acceptance Rate 109 of 221 submissions, 49%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Task-Based Polar Decomposition Using SLATE on Massively Parallel Systems with Hardware AcceleratorsProceedings of the SC '23 Workshops of the International Conference on High Performance Computing, Network, Storage, and Analysis10.1145/3624062.3624248(1680-1687)Online publication date: 12-Nov-2023
  • (2023)High-Performance SVD Partial Spectrum ComputationProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3581784.3607109(1-12)Online publication date: 12-Nov-2023
  • (2022)A review on the selection criteria for the truncated SVD in Data Science applicationsJournal of Computational Mathematics and Data Science10.1016/j.jcmds.2022.1000645(100064)Online publication date: Dec-2022
  • (2021)Meeting the real-time challenges of ground-based telescopes using low-rank matrix computationsProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3458817.3476225(1-16)Online publication date: 14-Nov-2021

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media