skip to main content
10.1145/3218585.3218587acmotherconferencesArticle/Chapter ViewAbstractPublication PagesdsaiConference Proceedingsconference-collections
research-article

A review of machine learning prediction methods for anxiety disorders

Published: 20 June 2018 Publication History

Abstract

Anxiety disorders are a type of mental disorders characterized by important feelings of fear and anxiety. Recently the evolution of machine learning techniques has helped greatly to develop tools assisting doctors to predict mental disorders and support patient care. In this work, a comparative literature search was conducted on research for the prediction of specific types of anxiety disorders, using machine learning techniques. Sixteen (16) studies were selected and examined, revealing that machine learning techniques can be used for effectively predicting anxiety disorders. The accuracy of the results varies according to the type of anxiety disorder and the type of methods utilized for predicting the disorder. We can deduce that significant work has been done on the prediction of anxiety using machine learning techniques. However, in the future we may achieve higher accuracy scores and that could lead to a better treatment support for patients.

References

[1]
S.M. Alarcao and M.J. Fonseca. 2017. Emotions recognition using EEG signals: A survey. IEEE Transactions on Affective Computing (2017).
[2]
American Psychiatric Association. 2000. Diagnostic and Statistical Manual of Mental Disorders (5th ed.). American Psychiatric Publishing, Washington, DC.
[3]
S. Anjume, K. Amandeep, A.M. Aijaz, and F. Kulsum. 2017. Performance Analysis of Machine Learning Techniques to Predict Mental Health Disorders in Children. International Journal of Innovative Research in Computer and Communication Engineering 5, 5 (2017).
[4]
J.C. Ballenger, R.B. Lydiard, and S.M. Turner. 1995. Panic disorder and agoraphobia. Treatments of Psychiatric Disorders 2 (1995), 807--822.
[5]
C.M. Bishop. 1995. Neural Networks for Pattern Recognition. Oxford.
[6]
L. Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123--140.
[7]
L. Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5--32.
[8]
C.J.C. Burges. 2005. Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers, chapter Geometric Methods for Feature Selection and Dimensional Reduction: A Guided Tour. Kluwer Academic 1 (2005), 5.
[9]
M. Chatterjee, G. Stratou, S. Scherer, and L.P. Morency. 2014. Context-based signal descriptors of heart-rate variability for anxiety assessment. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3631--3635.
[10]
H. Chen, Y. Huang, and N. Zhang. 2015. Joint modeling of a linear mixed effects model for selfesteem from mean ages 13 to 22 and a generalized linear model for anxiety disorder at mean age 33. Journal of Medical Statistics and Informatics 3, 1 (2015), 1--6.
[11]
F. Dabek and J.J. Caban. 2015. A neural network based model for predicting psychological conditions. In International Conference on Brain Informatics and Health. Springer, 252--261.
[12]
O. Doehrmann, S.S. Ghosh, F.E. Polli, G.O. Reynolds, F. Horn, A. Keshavan, C. Triantafyllou, Z.M. Saygin, S. Whitfield-Gabrieli, and S.G. Hofmann. 2013. Predicting treatment response in social anxiety disorder from functional magnetic resonance imaging. JAMA psychiatry 70, 1 (2013), 87--97.
[13]
E. Ertin, N. Stohs, S. Kumar, A. Raij, M. al'Absi, and S. Shah. 2011. AutoSense: unobtrusively wearable sensor suite for inferring the onset, causality, and consequences of stress in the field. In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems. ACM, 274--287.
[14]
F.L. Ferreira, S. Cardoso, D. Silva, M. Guerreiro, A. de Mendonça, and S.C. Madeira. 2017. Improving Prognostic Prediction from Mild Cognitive Impairment to Alzheimer's Disease Using Genetic Algorithms. In International Conference on Practical Applications of Computational Biology & Bioinformatics. Springer, 180--188.
[15]
S. Frangou, D. Dima, and J. Jogia. 2017. Towards person-centered neuroimaging markers for resilience and vulnerability in bipolar disorder. Neuroimage 145 (2017), 230--237.
[16]
A. Frick, M. Gingnell, A.F. Marquand, K. Howner, H. Fischer, M. Kristiansson, S.C.R. Williams, M. Fredrikson, and T. Furmark. 2014. Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure. Behavioural brain research 259 (2014), 330--335.
[17]
I.R. Galatzer-Levy, K.I. Karstoft, A. Statnikov, and A.Y. Shalev. 2014. Quantitative forecasting of PTSD from early trauma responses: A machine learning application. Journal of psychiatric research 59 (2014), 68--76.
[18]
G. Gifford, N. Crossley, P. Fusar-Poli, H.G. Schnack, R.S. Kahn, N. Koutsouleris, T.D. Cannon, and P. McGuire. 2017. Using neuroimaging to help predict the onset of psychosis. Neuroimage 145 (2017), 209--217.
[19]
T. Hahn, T. Kircher, B. Straube, H.U. Wittchen, C. Konrad, A. Ströhle, A. Wittmann, B. Pfleiderer, A. Reif, and V. Arolt. 2015. Predicting treatment response to cognitive behavioral therapy in panic disorder with agoraphobia by integrating local neural information. JAMA psychiatry 72, 1 (2015), 68--74.
[20]
K. Hilbert, U. Lueken, M. Muehlhan, and K. Beesdo-Baum. 2017. Separating generalized anxiety disorder from major depression using clinical, hormonal, and structural MRI data: A multimodal machine learning study. Brain and behavior 7, 3 (2017).
[21]
J. Huang and C.X. Ling. 2005. Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on knowledge and Data Engineering 17, 3 (2005), 299--310.
[22]
F.V. Jensen. 1996. An Introduction to Bayesian Networks. Springer-Verlag.
[23]
S. Kar, S. Das, and P.K. Ghosh. 2014. Applications of neuro fuzzy systems: A brief review and future outline. Applied Soft Computing 15 (2014), 243--259.
[24]
K.I. Karstoft, I.R. Galatzer-Levy, A. Statnikov, Z. Li, and A.Y. Shalev. 2015. Bridging a translational gap: using machine learning to improve the prediction of PTSD. BMC psychiatry 15, 1 (2015), 30.
[25]
C.D. Katsis, N.S. Katertsidis, and D.I. Fotiadis. 2011. An integrated system based on physiological signals for the assessment of affective states in patients with anxiety disorders. Biomedical Signal Processing and Control 6, 3 (2011), 261--268.
[26]
P. Kazienko, E. Lughofer, and B. Trawinski. 2013. Hybrid and ensemble methods in machine learning. Journal of Universal Computer Science 19, 4 (2013), 457--461.
[27]
R.C. Kessler. 2000. Posttraumatic stress disorder: the burden to the individual and to society. The Journal of clinical psychiatry (2000).
[28]
R.C. Kessler, H.M. Van Loo, K.J. Wardenaar, R.M. Bossarte, L.A. Brenner, D.D. Ebert, P. de Jonge, A.A. Nierenberg, A.J. Rosellini, and N.A. Sampson. 2017. Using patient self-reports to study heterogeneity of treatment effects in major depressive disorder. Epidemiology and psychiatric sciences 26, 1 (2017), 22--36.
[29]
R.C. Kessler, S. Rose, K.C. Koenen, E.G. Karam, P.E. Stang, D.J. Stein, S.G. Heeringa, E.D. Hill, I. Liberzon, and K.A. McLaughlin. 2014. How well can post-traumatic stress disorder be predicted from pre-trauma risk factors? An exploratory study in the WHO World Mental Health Surveys. World Psychiatry 13, 3 (2014), 265--274.
[30]
R.C. Kessler, H.M. van Loo, K.J. Wardenaar, R.M. Bossarte, LA. Brenner, T. Cai, D.D. Ebert, I. Hwang, J. Li, and R. de Jonge. 2016. Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Molecular psychiatry 21, 10 (2016), 1366--1371.
[31]
J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. 1998. On combining classifiers. In IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20. 226--239. Issue 3.
[32]
R. Kohavi and J.R. Quinlan. 1999. Decision tree discovery. In Handbook of data mining and knowledge discovery. University Press, 267--276.
[33]
S. Kotsiantis, I. Zaharakis, and P. Pintelas. 2006. Machine learning: A review of classification and combining techniques. Journal of Artificial Intelligence Review 26 (2006), 159--190.
[34]
T. Kotsilieris, E. Pintelas, I.E. Livieris, and P. Pintelas. 2018. Reviewing machine learning techniques for predicting anxiety disorders. Technical Report TR01-18. University of Patras.
[35]
M. Lader. 2015. Generalized anxiety disorder. In Encyclopedia of Psychopharmacology. Springer, 699--702.
[36]
M.J. Lenard, G.R. Madey, and P. Alam. 1998. The design and validation of a hybrid information system for the auditor's going concern decision. Journal of Management Information Systems 14, 4 (1998), 219--237.
[37]
F. Liu, W. Guo, J. Fouche, Y. Wang, W. Wang, J. Ding, L. Zeng, C. Qiu, Q. Gong, and W. Zhang. 2015. Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Structure and Function 220, 1 (2015), 101--115.
[38]
F. Liu, B. Xie, Y. Wang, W. Guo, J. Fouche, Z. Long, W. Wang, H. Chen, M. Li, and X. Duan. 2015. Characterization of post-traumatic stress disorder using resting-state fMRI with a multi-level parametric classification approach. Brain topography 28, 2 (2015), 221--237.
[39]
Y. Liu, B.M. Scirica, C.M. Stultz, and J.V. Guttag. 2016. Beatquency domain and machine learning improve prediction of cardiovascular death after acute coronary syndrome. Scientific reports 6 (2016).
[40]
I.E. Livieris, M.S. Apostolopoulou, D.G. Sotiropoulos, S.A. Sioutas, and P. Pintelas. 2009. Classification of Large Biomedical Data using ANNs based on BFGS method. In 13th Panhellenic Conference on Informatics (PCI'19). IEEE, 87--91.
[41]
U. Lueken, B. Straube, Y. Yang, T. Hahn, K. Beesdo-Baum, H.U. Wittchen, C. Konrad, A. Ströhle, A. Wittmann, and A.L. Gerlach. 2015. Separating depressive comorbidity from panic disorder: A combined functional magnetic resonance imaging and machine learning approach. Journal of affective disorders 184 (2015), 182--192.
[42]
X.H. Meng, Y.X. Huang, D.P. Rao, Q. Zhang, and Q. Liu. 2013. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. The Kaohsiung journal of medical sciences 29, 2 (2013), 93--99.
[43]
T. Mitchell. 1997. Machine learning. McGraw Hill.
[44]
M. Olfson, C. Blanco, S. Wang, G. Laje, and C.U. Correll. 2014. National trends in the mental health care of children, adolescents, and adults by office-based physicians. JAMA psychiatry 71, 1 (2014), 81--90.
[45]
S.I. Omurca and E. Ekinci. 2015. An alternative evaluation of post traumatic stress disorder with machine learning methods. In International Symposium on Innovations in Intelligent SysTems and Applications (INISTA),. IEEE, 1--7.
[46]
T.C. Panagiotakopoulos, D.P. Lyras, M. Livaditis, K.N. Sgarbas, G.C. Anastassopoulos, and D.K. Lymberopoulos. 2010. A contextual data mining approach toward assisting the treatment of anxiety disorders. IEEE Transactions on Information Technology in Biomedicine 14, 3 (2010), 567--581.
[47]
S.P. Pantazatos, A. Talati, F.R. Schneier, and J. Hirsch. 2014. Reduced anterior temporal and hippocampal functional connectivity during face processing discriminates individuals with social anxiety disorder from healthy controls and panic disorder, and increases following treatment. Neuropsychopharmacology 39, 2 (2014), 425--434.
[48]
A. Sathyanarayana, S. Joty, L. Fernandez-Luque, F. Ofli, J. Srivastava, A. Elmagarmid, T. Arora, and S. Taheri. 2016. Sleep quality prediction from wearable data using deep learning. JMIR mHealth and uHealth 4, 4 (2016).
[49]
G.N. Saxe, S. Ma, J. Ren, and C. Aliferis. 2017. Machine learning methods to predict child posttraumatic stress: A proof of concept study. BMC psychiatry 17, 1 (2017), 223.
[50]
J. Taelman, S. Vandeput, A. Spaepen, and S. Van Huffel. 2009. Influence of Mental Stress on Heart Rate and Heart Rate Variability. In th European Conference of the International Federation for Medical and Biological Engineering IFBME Proceedings, Vol. 22. 1366--1369.
[51]
V.N. Vapnik. 1995. The Nature of Statistical Learning Theory. NY: Springer.
[52]
H.U. Wittchen, F.R.J. Jacobi, A. Gustavsson, M. Svensson, B. Jönsson, J. Olesen, C. Allgulander, J. Alonso, and C. Faravelli. 2011. The size and burden of mental disorders and other disorders of the brain in Europe 2010. European neuropsychopharmacology 21, 9 (2011), 655--679.
[53]
D. Wolpert. 1992. Stacked Generalization. Neural Networks 5, 2 (1992), 241--260.
[54]
W. Zhang, X. Yang, S. Lui, Y. Meng, L. Yao, Y. Xiao, W. Deng, W. Zhang, and Q. Gong. 2015. Diagnostic prediction for social anxiety disorder via multivariate pattern analysis of the regional homogeneity. BioMed research international 2015 (2015).

Cited By

View all
  • (2024)Máquina de vetores de suporte para predição de ansiedade em dependentes químicos em reabilitaçãoSupport vector machine for predicting anxiety in chemical dependency rehabilitation patientsMáquina de vectores de soporte para la predicción de ansiedad en pacientes de rehabilitación de dependencia químicaJournal of Health Informatics10.59681/2175-4411.v16.iEspecial.2024.133316:EspecialOnline publication date: 19-Nov-2024
  • (2024)Computational Approaches for Anxiety and Depression: A Meta- Analytical PerspectiveICST Transactions on Scalable Information Systems10.4108/eetsis.623211Online publication date: 14-Aug-2024
  • (2024)A pilot study on AI-driven approaches for classification of mental health disordersFrontiers in Human Neuroscience10.3389/fnhum.2024.137633818Online publication date: 10-Apr-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
DSAI '18: Proceedings of the 8th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion
June 2018
365 pages
ISBN:9781450364676
DOI:10.1145/3218585
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 June 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Machine learning
  2. agoraphobia
  3. data mining
  4. generalized anxiety disorder
  5. panic disorder
  6. posttraumatic stress disorder
  7. social anxiety disorder

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

DSAI 2018

Acceptance Rates

DSAI '18 Paper Acceptance Rate 17 of 23 submissions, 74%;
Overall Acceptance Rate 17 of 23 submissions, 74%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)173
  • Downloads (Last 6 weeks)13
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Máquina de vetores de suporte para predição de ansiedade em dependentes químicos em reabilitaçãoSupport vector machine for predicting anxiety in chemical dependency rehabilitation patientsMáquina de vectores de soporte para la predicción de ansiedad en pacientes de rehabilitación de dependencia químicaJournal of Health Informatics10.59681/2175-4411.v16.iEspecial.2024.133316:EspecialOnline publication date: 19-Nov-2024
  • (2024)Computational Approaches for Anxiety and Depression: A Meta- Analytical PerspectiveICST Transactions on Scalable Information Systems10.4108/eetsis.623211Online publication date: 14-Aug-2024
  • (2024)A pilot study on AI-driven approaches for classification of mental health disordersFrontiers in Human Neuroscience10.3389/fnhum.2024.137633818Online publication date: 10-Apr-2024
  • (2024)Machine Learning Techniques to Predict Mental Health Diagnoses: A Systematic Literature ReviewClinical Practice & Epidemiology in Mental Health10.2174/011745017931568824060705211720:1Online publication date: 26-Jul-2024
  • (2024)Multimodal Mental Health Digital Biomarker Analysis From Remote Interviews Using Facial, Vocal, Linguistic, and Cardiovascular PatternsIEEE Journal of Biomedical and Health Informatics10.1109/JBHI.2024.335207528:3(1680-1691)Online publication date: Mar-2024
  • (2024)Identification of Social Anxiety in High School: A Machine Learning Approaches to Real-Time Analysis of Student CharacteristicsIEEE Access10.1109/ACCESS.2024.340788512(77932-77946)Online publication date: 2024
  • (2024)Predicting remission following CBT for childhood anxiety disorders: a machine learning approachPsychological Medicine10.1017/S0033291724002654(1-11)Online publication date: 17-Dec-2024
  • (2024)Machine Learning Model for Anxiety Disorder Diagnosis Based on Sensory Time-Series DataBioinformatics and Biomedical Engineering10.1007/978-3-031-64629-4_20(241-249)Online publication date: 23-Aug-2024
  • (2024)A Novel Framework Predicting Anxiety in Chronic Disease Using Boosting Algorithm and Feature Selection TechniquesAdvances in Information and Communication10.1007/978-3-031-54053-0_16(213-221)Online publication date: 17-Mar-2024
  • (2024)Medical intelligence for anxiety research: Insights from genetics, hormones, implant science, and smart devices with future strategiesWIREs Data Mining and Knowledge Discovery10.1002/widm.155214:6Online publication date: 4-Aug-2024
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media