skip to main content
survey

Knee Articular Cartilage Segmentation from MR Images: A Review

Published: 19 November 2018 Publication History

Abstract

Articular cartilage (AC) is a flexible and soft yet stiff tissue that can be visualized and interpreted using magnetic resonance (MR) imaging for the assessment of knee osteoarthritis. Segmentation of AC from MR images is a challenging task that has been investigated widely. The development of computational methods to segment AC is highly dependent on various image parameters, quality, tissue structure, and acquisition protocol involved. This review focuses on the challenges faced during AC segmentation from MR images followed by the discussion on computational methods for semi/fully automated approaches, whilst performances parameters and their significances have also been explored. Furthermore, hybrid approaches used to segment AC are reviewed. This review indicates that despite the challenges in AC segmentation, the semi-automated method utilizing advanced computational methods such as active contour and clustering have shown significant accuracy. Fully automated AC segmentation methods have obtained moderate accuracy and show suitability for extensive clinical studies whilst advanced methods are being investigated that have led to achieving significantly better sensitivity. In conclusion, this review indicates that research in AC segmentation from MR images is moving towards the development of fully automated methods using advanced multi-level, multi-data, and multi-approach techniques to provide assistance in clinical studies.

References

[1]
T. O. A. Aderonke Omobonike Akinpelu. 2009. Babatunde ayo adekanla, adesola christiana odole. Prevalence and pattern of symptomatic knee osteoarthritis in Nigeria: A community-based study. Internet J. Allied Health Sci. Prac. 7, 3 (Jul. 2009).
[2]
D. W. P. Lubar, L. F. Callahan, R. W. Chang, C. G. Helmick, D. R. Lappin, A. Melnick, R. W. Moskowitz, E. Odom, J. Sacks, S. B. Toal, and M. B. Waterman. 2010. A national public health agenda for osteoarthritis 2010” centers for disease control and prevention, Retrieved from http://www.arthritis.org/media/Ad%20Council%20101/OA_Agenda_2010.pdf.
[3]
D. T. Felson. 1988. Epidemiology of hip and knee osteoarthritis. Epidemiol. Rev. 10, 1 (1988), 1--28.
[4]
T. Neogi. 2013. The epidemiology and impact of pain in osteoarthritis. Osteoarthr. Cartilage 21, 9 (2013), 1145--1153.
[5]
R. Altman et al. 1986. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthr. Rheum. 29, 8 (1986), 1039--1049.
[6]
A. F. Hani et al. 2013. Physiological assessment of in vivo human knee articular cartilage using sodium MR imaging at 1.5 T. Magn. Reson. Imag. 31, 7 (2013), 1059--1067.
[7]
M. H. Naka et al. 2005. Evaluation of the effect of collagen network degradation on the frictional characteristics of articular cartilage using a simultaneous analysis of the contact condition. Clin. Biomech. (Bristol, Avon), 20, 10 (2005), 1111--1118.
[8]
V. C. Mow, A. W. Zhu, and A. Ratcliffe. 1991. Structure and function of articular cartilage and meniscus. Basic Orthopaedicbbiomechanics, V. C. Mow and W. C. Hayes (Eds.). Raven Press, Ltd., New York, NY.
[9]
V. C. Mow and L. A. Setton. 1998. Mechanical properties of normal and osteoarthritic articular cartilage. Oxford University Press, Oxford, UK, 108--122.
[10]
A. J. Sophia Fox, A. Bedi, and S. A. Rodeo. 2009. The basic science of articular cartilage: Structure, composition, and function. Sports Health 1, 6 (2009), 461--468.
[11]
S. Saarakkala et al. 2003. Ultrasound indentation of normal and spontaneously degenerated bovine articular cartilage. Osteoarthr. Cartilage 11, 9 (2003), 697--705.
[12]
A. F. M. Hani, D. Kumar, A. S. Malik, R. M. K. R. Ahmad, R. Razak, and A. Kiflie. 2015. Non-invasive and in vivo assessment of osteoarthritic articular cartilage: a review on MRI investigations. Rheumatology International 35, 1 (2015), 1--16.
[13]
A. F. M. Hani et al. 2011. Features and modalities for assessing early knee osteoarthritis. In Proceedings of the 2011 International Conference on Electrical Engineering and Informatics (ICEEI).
[14]
F. Eckstein et al. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): Morphological assessment. Osteoarthr. Cartilage Suppl A, 14 (2006), A46--75.
[15]
T. G. Williams et al. 2010. Measurement and visualisation of focal cartilage thickness change by MRI in a study of knee osteoarthritis using a novel image analysis tool. Br. J. Radiol. 83, 995 (2010), 940--948.
[16]
A. E. Wluka et al. 2002. The determinants of change in tibial cartilage volume in osteoarthritic knees. Arthr. Rheum. 46, 8 (2002), 2065--2072.
[17]
F. Hanna et al. 2005. Factors influencing longitudinal change in knee cartilage volume measured from magnetic resonance imaging in healthy men. Ann. Rheum. Dis. 64, 7 (2005), 1038--1042.
[18]
F. Eckstein, J. E. Collins, M. C. Nevitt, J. A. Lynch, V. Kraus, J. N. Katz, E. Losina, W. Wirth, A. Guermazi, F. W. Roemer, and D. J. Hunter. 2015. Cartilage thickness change as an imaging biomarker of knee osteoarthritis progression—data from the fnih OA biomarkers consortium. Arthr. Rheumatol. 67, 12 (2015), 3184.
[19]
E. H. Oei et al. 2014. Quantitative radiologic imaging techniques for articular cartilage composition: toward early diagnosis and development of disease‐modifying therapeutics for osteoarthritis. Arthr. Care Res. 66, 8 (2014), 1129--1141.
[20]
Carmen Taylor et al. 2009. Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1ρ, dGEMRIC, and contrast-enhanced CT. Magn. Reson. Imag. 27, 6 (2009), 779--784.
[21]
B. J. M. T. Heimann, M. A. Styner, M. Niethammer, and S. K. Warfield. 2010. Segmentation of knee images: A grand challenge. In Proc. MICCAIWorkshop on Medical Image Analysis for the Clinic. 2010.
[22]
Jenny Folkesson et al. 2007. Segmenting articular cartilage automatically using a voxel classification approach. IEEE Tran. Med. Imag. 26, 1 (2007), 106--115.
[23]
Jurgen Fripp et al. 2007. Automated morphological knee cartilage analysis of 3D MRI at 3T. In MAGNETOM Flash. Retrieved February 2013 from www.siemens.com/magnetom-world2007.
[24]
E. B. Dam et al. 2006. Semi-automatic knee cartilage segmentation. In SPIE Medical Imaging: Image Processing 2006. 1286--1294.
[25]
V. Grau et al. 2004. Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imag. 23, 4 (2004), 447--458.
[26]
J. G. B.-M. Tamez-Pena. 2004. Monica; Totterman, saara. Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets. In Proceedings of the SPIE Conference on Medical Imaging and Image Processing.
[27]
K. Marstal et al. 2011. Semi-automatic segmentation of knee osteoarthritic cartilage in magnetic resonance images. In Proceedings of the International Symposium ELMAR (ELMAR’11).
[28]
S. K. Pakin, J. G. Tamez-Pena, S. Totterman, and K. J. Parker. 2002. Segmentation, surface extraction and thickness computation of articular cartilage. In Medical Imaging 2002: Image Processing, Vol. 4684. International Society for Optics and Photonics, 155--167.
[29]
J. Folkesson et al. 2005. Automatic segmentation of the articular cartilage in knee MRI using a hierarchical multi-class classification scheme. Med. Image Comput. Comput. Assist. Interv. 2005. 8, 1 (2005), 327--334.
[30]
S. Liang, C. Charles, and M. Niethammer. 2012. Automatic multi-atlas-based cartilage segmentation from knee MR images. In Proceedings of the 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI’12).
[31]
B. Glocker et al. 2007. Primal/dual linear programming and statistical atlases for cartilage segmentation. Med. Image Comput. Comput. Assist. Interv. 10, 2 (2007), 536--543.
[32]
S. Koo, B. A. Hargreaves, T. P. Andriacchi, and G. E. Gold. 2008. Automatic segmentation of articular cartilage from MRI: A multi-contrast and multi-dimensional approach. In Proc. Intl. Soc. Mag. Reson. Med. 16 (2008), 2546.
[33]
A. M. Hani et al. Automatic segmentation of articular cartilage from combined assessment of sodium and proton MR knee images. Osteoarthr. Cartilage 21 (2013), S198--S199.
[34]
J. Tamez-Pena et al. 2011. Atlas based method for the automated segmentation and quantification of knee features: Data from the osteoarthritis initiative. In Proceedings of the 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro,. 2011.
[35]
J. M. Farber, J. Tamez-Pena, S. Totterman, K. Baum, E. Schreyer, and E. Brandser. 2014. 3D thickness maps derived from automated segmentation of knee articular cartilage at 1.5 T: A feasibility study using 3D FS DESS, 3D PD FS FSE, and 2D PD FS FSE. Osteoarthr. Cartilage 22 (2014), S284.
[36]
J. Kubicek et al. 2014. Articular cartilage defect detection based on image segmentation with colour mapping. In Computational Collective Intelligence. Technologies and Applications, D. Hwang, J. Jung, and N.-T. Nguyen (Eds.). Springer International Publishing, New York, NY, 214--222.
[37]
G. González and B. Escalante-Ramírez. 2014. Knee cartilage segmentation using active shape models and local binary patterns. In Optics, Photonics, and Digital Technologies for Multimedia Applications III, Vol. 9138. International Society for Optics and Photonics, 91380K.
[38]
A. Hani, D. Kumar, A. Malik, N. Walter, R. Razak, and A. Kiflie. 3D articular cartilage reconstruction using in vivo multinuclear mr images. Osteoarthr. Cartilage 22 (2014), S266.
[39]
B. S. Bentley and R. V. Hill. 2007. Assessing macroscopic and microscopic indicators of osteoarthritis in the distal interphalangeal joints: A cadaveric study. Clin. Anat. 20, 7 (2007), 799--807.
[40]
Y. Y. Ho et al. 2007. Postoperative evaluation of the knee after autologous chondrocyte implantation: What radiologists need to know. Radiographics 27, 1 (2007), 207--220.
[41]
S. Saarakkala et al. 2010. Depth-wise progression of osteoarthritis in human articular cartilage: Investigation of composition, structure and biomechanics. Osteoarthr. Cartilage 18, 1 (2010), 73--81.
[42]
J. A. Lynch, S. Zaim, J. Zhao, A. Stork, C. G. Peterfy, and H. K Genant. Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours. In Medical Imaging 2000: Image Processing, Vol. 3979. International Society for Optics and Photonics, 925--936.
[43]
P. Dodin et al. 2010. Automatic human knee cartilage segmentation from 3-D magnetic resonance images. IEEE Trans. Biomed. Eng. 57, 11 (2010), 2699--2711.
[44]
Q. Wang et al. 2014. Semantic context forests for learning-based knee cartilage segmentation in 3D MR images. In Medical Computer Vision. Large Data in Medical Imaging, B. Menze, et al. (Eds.). Springer International Publishing, New York, NY, 105--115.
[45]
J. Carballido-Gamio and T. Link. 2011. Cartilage segmentation, in cartilage imaging, T. M. Link (Ed.). 2011, Springer, New York, NY, 117--126.
[46]
S. Crozier, J. Fripp, and S. Ourselin. 2009. Automatic segmentation of articular cartilage in mr images, 2009, Google Patents.
[47]
E. B. Dam et al. 2009. Identification of progressors in osteoarthritis by combining biochemical and MRI-based markers. Arthr. Res. Ther. 11, 4 (2009), R115.
[48]
E. B. D. Jenny Folkesson, Ole F. Olsen, Paola C. Pettersen, and C. Christiansen. 2007. Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans. Med. Imag. 26, 1 (2007), 106--115.
[49]
E. D. Jenny Folkesson, Ole Fogh Olsen, Paola Pettersen, and Claus Christiansen. 2005. Automatic segmentation of the articular cartilage in knee MRI using a hierarchical multi-class classification scheme. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI’05). 327--334.
[50]
G. E. Gold, D. Burstein, B. Dardzinski, P. Lang, F. Boada, and T. Mosher. 2006. MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers. Osteoarthritis and Cartilage 14, 76--86.
[51]
P. R. Kornaat et al. 2005. MR imaging of articular cartilage at 1.5 T and 3.0 T: Comparison of SPGR and SSFP sequences. Osteoarthr. Cartilage 13, 4 (2005), 338--344.
[52]
L. Shapiro, E. Staroswiecki, and G. Gold. 2010. MRI of the knee: Optimizing 3T imaging. Semin. Roentgenol. 45, 4 (2010), 238--249.
[53]
R. Kijowski et al. 2009. Comparison of 1.5-and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 250, 3 (2009), 839--848.
[54]
B. Kladny et al. 1995. Comparison of low-field (0.2 Tesla) and high-field (1.5 Tesla) magnetic resonance imaging of the knee joint. Arch. Orthop. Trauma Surg. 114, 5 (1995), 281--286.
[55]
N. K. Bangerter et al. 2016. Quantitative techniques for musculoskeletal MRI at 7 Tesla. Quant. Imag. Med. Surg. 6, 6 (2016), 715.
[56]
H. J. Braun and G. E. Gold. 2011. Advanced MRI of articular cartilage. Imag. Med. 3, 5 (2011), 541--555.
[57]
S. Trattnig et al. 2012. Advanced musculoskeletal magnetic resonance imaging at ultra-high field (7 T). In High-Field MR Imaging, J. Hennig and O. Speck (Eds.). 2012, Springer, Berlin, 189--213.
[58]
R. Stahl et al. 2009. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: Comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint. Skel. Radiol. 38, 8 (2009), 771--783.
[59]
R. Stahl, R. Krug, D. A. Kelley, J. Zuo, C. B. Ma, S. Majumdar, and T. M. Link. 2009. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: Comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint. Skel. Radiol. 38, 8 (2009), 771--783.
[60]
J. Fripp et al. 2010. Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. IEEE Trans. Med. Imag. 29, 1 (2010), 55--64.
[61]
M. Jarraya et al. 2014. Susceptibility artifacts detected on 3T MRI of the knee: Frequency, change over time and associations with radiographic findings: Data from the joints on glucosamine study. Osteoarthr. Cartilage 22, 10 (2014), 1499--1503.
[62]
R. Bitar, G. Leung, R. Perng, S. Tadros, A. R. Moody, J. Sarrazin, and T. P Roberts. 2006. MR pulse sequences: What every radiologist wants to know but is afraid to ask. RadioGraphics. 26 (2006), 513--526.
[63]
F. W. R. a. A. G. Daichi Hayashi. 2014. Osteoarthritic changes in the knee in handball players. Aspetar Sports Med. J. 3, TT3 (2014), 220--227.
[64]
F. Eckstein and W. Wirth. 2011. Quantitative cartilage imaging in knee osteoarthritis. Arthritis 2011.
[65]
A. F. M. Hani, D. Kumar, A. S. Malik, R. Razak, and A. Kiflie. 2013. Fusion of multinuclear magnetic resonance images of knee for the assessment of articular cartilage. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'13). IEEE, 6466-6469.
[66]
M. M. Peter, R. I. K. Cashman, Munir A. Gariba, and Mary E. Carter. 2002. Automated techniques for visualization and mapping of articular cartilage in MR images of the osteoarthritic knee: A base technique for the assessment of microdamage and submicro damage. IEEE Trans. Nanobiosci. 1, 2 (2002), 42--51.
[67]
B. K. Paunipagar and D. D. Rasalkar. 2014. Imaging of articular cartilage. Ind. J. Radiol. Imag. 24, 3 (2014), 237--248.
[68]
P. K. Paul et al. 1993. Variation in MR signal intensity across normal human knee cartilage. J Magn Reson Imaging, 1993. 3, 4 (1993), 569--74.
[69]
A. V. Matej Mlejnek, 2004. Meister eduard groller, interactive thickness visualization of articular cartilage. In Proceedings of the Conference on Visualization (VIS’04). IEEE, 521--528.
[70]
J. Carballido-Gamio, K. L. E. Ozhinsky, and S. Majumdar. 2004. MRI cartilage of the knee: Segmentation, analysis, and visualization. In Proceedings of the Conference of the International Society of Magnetic Resonance Medicine 2004.
[71]
T. Stammberger et al. 1999. Interobserver reproducibility of quantitative cartilage measurements: Comparison of B-spline snakes and manual segmentation. Magn. Reson. Imag. 17, 7 (1997), 1033--1042.
[72]
Z. A. Cohen, D. M. Mccarthy, S. D. Kwak, P. Legrand, F. Fogarasi, E. J. Ciaccio, and G. A. Ateshian. 1999. Knee cartilage topography, thickness, and contact areas from MRI: In-vitro calibration and in-vivo measurements. Osteoarthr. Cartilage 7, 1 (1999), 95--109.
[73]
S. Balamoody et al. 2010. Comparison of 3T MR scanners in regional cartilage-thickness analysis in osteoarthritis: A cross-sectional multicenter, multivendor study. Arthr. Res. Therapy 12, 5 (2010), 1--9.
[74]
S. J. Matzat, E. J. McWalter, F. Kogan, W. Chen, and G. E. Gold. 2015. T2 relaxation time quantitation differs between pulse sequences in articular cartilage. J. Magn. Res. Imag. 42, 1 (2015), 105--113.
[75]
K. Zhang, W. Lu, and P. Marziliano. 2013. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies. Magn. Reson. Imag. 31, 10 (2013), 1731--1743.
[76]
A. E. W. Yuanyuan Wang, Graeme Jones, Changhai Ding, and Flavia M. Cicuttini. 2012. Use magnetic resonance imaging to assess articular cartilage. Ther. Adv. Musculoskel. Dis. 4, 2 (2012), 77--97.
[77]
M. H. Brem et al. 2009. Magnetic resonance image segmentation using semi-automated software for quantification of knee articular cartilage—initial evaluation of a technique for paired scans. Skel. Radiol. 38, 5 (2009), 505--511.
[78]
S. Liang, C. Charles, and M. Niethammer. 2013. Longitudinal three-label segmentation of knee cartilage. In Proceedings of the 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI’13).
[79]
R. Gonzalez and R. Woods. 2007. Digital Image Processing (3rd ed.). Prentice Hall.
[80]
A. A. Kshirsagar et al. 1998. Measurement of localized cartilage volume and thickness of human knee joints by computer analysis of three-dimensional magnetic resonance images. Invest. Radiol. 33, 5 (1998), 289--299.
[81]
S. Ghosh et al. 2000. Watershed segmentation of high resolution magnetic resonance images of articular cartilage of the knee. In Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
[82]
M. E. Bowers et al. 2008. Quantitative MR imaging using "LiveWire" to measure tibiofemoral articular cartilage thickness. Osteoarthr. Cartilage 16, 10 (2008), 1167--1173.
[83]
A. J. Gougoutas et al. 2004. Cartilage volume quantification via Live wire segmentation. Acad. Radiol. 11, 12 (2004), 1389--1395.
[84]
C. Kauffmann et al. 2003. Computer-aided method for quantification of cartilage thickness and volume changes using MRI: validation study using a synthetic model. IEEE Trans. Biomed. Eng. 50, 8 (2003), 978--988.
[85]
J. Tang et al. 2006. Surface extraction and thickness measurement of the articular cartilage from MR images using directional gradient vector flow snakes. IEEE Trans. Biomed. Eng. 53, 5 (2006), 896--907.
[86]
S. Solloway et al. 1997. The use of active shape models for making thickness measurements of articular cartilage from MR images. Magn. Reson. Med. 37, 6 (1997), 943--952.
[87]
S. C. Hackjoon Shim, Cheng Tao, Jin-Hong Wang, C. Kent Kwoh, and Kyongtae T. Bae. 2009. Knee cartilage: Efficient and reproducible segmentation on high-spatial-resolution MR images with the semiautomated graph-cut algorithm method. Radiology 251, 2 (2009), 548--556.
[88]
J. Lee, S. Gumus, C. Moon, C. Tao, S. Bae, and K. Bae. 2013. Fully-automated segmentation of cartilage from the MR images of knee using a multi-atlas and local structural analysis method. In Proceedings of the Radiological Society of North America 2013 Scientific Assembly and Annual Meeting.
[89]
Y. Yin et al. 2010. LOGISMOS--layered optimal graph image segmentation of multiple objects and surfaces: Cartilage segmentation in the knee joint. IEEE Trans. Med. Imag. 29, 12 (2010), 2023--2037.
[90]
S. Koo, B. A. Hargreaves, and G. E. Gold, 2009. Automatic segmentation of articular cartilage from mri. Google Patents.
[91]
A. M. Hani et al. 2013. Accessibility to combined assessment of morphology and physiology in articular cartilage using 23NA/1H coil at 1.5 Tesla MRI. Osteoarthr. Cartilage 21 (2013), S192--S193.
[92]
D. Steines, B. Timsari, and K. Tsougarakis. 2012. Fusion of multiple imaging planes for isotropic imaging in MRI and quantitative image analysis using isotropic or near-isotropic imaging. Google Patents.
[93]
S. Lee et al. 2011. Optimization of local shape and appearance probabilities for segmentation of knee cartilage in 3-D MR images. Comput. Vis. Image Understand. 115, 12 (2011), 1710--1720.
[94]
J. Duryea. 2007. Novel fast semi-automated software to segment cartilage for knee MR acquisitions. Osteoarthr. Cartilage 15, 5 (2007), 487--492.
[95]
A. Fenste and B. Chiu. 2005. Evaluation of segmentation algorithms for medical imaging. In Proceedings of the 27th Annual International Conference on Engineering in Medicine and Biology Society (IEEE-EMBS'05). IEEE, 7186--7189.
[96]
C. G. Peterfy et al. 1994. Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: Optimization and validation. Radiology 192, 2 (1994), 485--491.
[97]
M. A. Piplani et al. 1996. Articular cartilage volume in the knee: Semiautomated determination from three-dimensional reformations of MR images. Radiology 198, 3 (1996), 855--859.
[98]
S. Koo, G. E. Gold, and T. P. Andriacchi. 2005. Considerations in measuring cartilage thickness using MRI: Factors influencing reproducibility and accuracy. Osteoarthr. Cartilage 13, 9 (2005), 782--789.
[99]
J. Fripp et al. 2007. Automatic segmentation of articular cartilage in magnetic resonance images of the knee. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI’07). Springer, Berlin, 186--194.
[100]
A. Prasoon et al. 2013. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin.
[101]
L. Shan et al. 2014. Automatic atlas-based three-label cartilage segmentation from MR knee images. Med. Image Anal. 18, 7 (2014), 1233--1246.
[102]
A. F. M. Hani et al. 2015. Multinuclear MR and multilevel data processing: An insight into morphologic assessment of in vivo knee articular cartilage. Acad. Radiol. 22, 1 (2015), 93--104.
[103]
J. Pang et al. 2015. Automatic articular cartilage segmentation based on pattern recognition from knee MRI images. J. Dig. Imag. 28, 6 (2015), 695--703.
[104]
C. N. Öztürk and S. Albayrak. 2016. Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling. Comput. Biol. Med. 72 (2016), 90--107.
[105]
M. S. M. Swamy and M. S. Holi. 2012. Knee joint articular cartilage segmentation, visualization and quantification using image processing techniques: A review. Int. J. Comput. Appl. 42, 19 (2012).
[106]
D. Ma et al. 2013. Magnetic resonance fingerprinting. Nature 495, 7440 (2013), 187.
[107]
J. Folkesson et al. Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans. Med. Imag. 26, 1 (2007), 106--115.

Cited By

View all
  • (2025)MPFCNet: multi-scale parallel feature fusion convolutional network for 3D knee segmentation from MR imagesPattern Analysis and Applications10.1007/s10044-025-01437-628:2Online publication date: 10-Mar-2025
  • (2024)Prior-based 3D U-NetComputers and Graphics10.1016/j.cag.2023.07.008115:C(167-180)Online publication date: 1-Feb-2024
  • (2024)Source-free unsupervised adaptive segmentation for knee joint MRIBiomedical Signal Processing and Control10.1016/j.bspc.2024.10602892(106028)Online publication date: Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 51, Issue 5
September 2019
791 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3271482
  • Editor:
  • Sartaj Sahni
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 November 2018
Accepted: 01 June 2018
Revised: 01 March 2018
Received: 01 July 2016
Published in CSUR Volume 51, Issue 5

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Accuracy
  2. Articular Cartilage
  3. Computational Methods
  4. Hybrid Models
  5. Magnetic Resonance Imaging
  6. Segmentation

Qualifiers

  • Survey
  • Research
  • Refereed

Funding Sources

  • Ministry of Education Malaysia and Collaborative fund from SGGS Institute of Technology, Nanded, India
  • Higher Institution Center of Excellence (HICoE)

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)49
  • Downloads (Last 6 weeks)4
Reflects downloads up to 08 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)MPFCNet: multi-scale parallel feature fusion convolutional network for 3D knee segmentation from MR imagesPattern Analysis and Applications10.1007/s10044-025-01437-628:2Online publication date: 10-Mar-2025
  • (2024)Prior-based 3D U-NetComputers and Graphics10.1016/j.cag.2023.07.008115:C(167-180)Online publication date: 1-Feb-2024
  • (2024)Source-free unsupervised adaptive segmentation for knee joint MRIBiomedical Signal Processing and Control10.1016/j.bspc.2024.10602892(106028)Online publication date: Jun-2024
  • (2024)3D geometric analysis of the knee with magnetic resonance imagingCartilage Tissue and Knee Joint Biomechanics10.1016/B978-0-323-90597-8.00024-4(201-229)Online publication date: 2024
  • (2023)Hybrid trust-based optimized virtual machine migration for dynamic load balancing and replica management in heterogeneous cloudMultiagent and Grid Systems10.3233/MGS-23002519:3(231-252)Online publication date: 1-Jan-2023
  • (2023)Towards optimal virtual machine placement methods in cloud environmentsJournal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology10.3233/JIFS-22289644:5(8663-8696)Online publication date: 1-Jan-2023
  • (2023)Task grouping and optimized deep learning based VM sizing for hosting containers as a serviceJournal of Cloud Computing: Advances, Systems and Applications10.1186/s13677-023-00441-712:1Online publication date: 25-Apr-2023
  • (2023)Towards Scalable Cloud Gaming Systems: Decoupling Physics from the Game EngineProceedings of the 22nd Brazilian Symposium on Games and Digital Entertainment10.1145/3631085.3631225(151-160)Online publication date: 6-Nov-2023
  • (2023)Batch Jobs Load Balancing Scheduling in Cloud Computing Using Distributional Reinforcement LearningIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2023.333451935:1(169-185)Online publication date: 20-Nov-2023
  • (2023)Revamping the Resilience and High Availability of 5G Core for 6G Ready Network SlicesIEEE Transactions on Network and Service Management10.1109/TNSM.2023.334813721:2(2287-2302)Online publication date: 29-Dec-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media