skip to main content
10.1145/3233547.3233702acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Modeling the Tertiary Structure of a Multi-domain Protein: Structure Prediction of Multi-domain Proteins

Published: 15 August 2018 Publication History

Abstract

Due to the central role that tertiary structure plays in determining protein function, resolving protein tertiary structures is an integral research thrust in both wet and dry laboratories. Dry laboratories have primarily focused on small- to medium-size proteins. However, proteins central to human biology and human health are often quite complex, containing multiple domains and consisting of thou- sands of amino acids. Such proteins are challenging for various reasons, including the inability to crystallize. We present a case study of structure determination for the Rift Valley fever virus L-protein, a a large, multi-domain protein with currently no available tertiary structure. We employ this case study as an emerging paradigm and demonstrate how to leverage the rich and diverse landscape of bioinformatics tools for building tertiary structure models for multi-domain proteins with thousands of amino acids.

References

[1]
S. Altschul, F. Gish, W. Miller, E. W. Myers, and D. J. Lipman . 1990. Basic local alignment search tool. J Mol Biol Vol. 215 (1990), 403--410.
[2]
H. M. Berman, K. Henrick, and H. Nakamura . 2003. Announcing the worldwide Protein Data Bank. Nat. Struct. Bio. Vol. 10 (2003), 980--980.
[3]
D. Bhattacharya and J. Cheng . 2013. 3Drefine: Consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins: Struct, Funct, and Bioinf Vol. 81 (2013), 119--131.
[4]
D. D. Bohr and P. E. Wright . 2008. How do proteins interact? Science, Vol. 320, 5882 (2008), 1429--1430.
[5]
G.M. Boratyn, A. A. Sch"affer, R. Agarwala, S. F. Altschul, and et al. . 2012. Domain enhanced lookup time accelerated BLAST. Biol. Direct Vol. 7:12 (2012), 1--14.
[6]
M. Bouloy and F. Weber . 2010. Molecular biology of rift valley Fever virus. Open Virol J Vol. 4 (2010), 8--14.
[7]
D. A. Case, R. M. Betz, D. S. Cerutti, T. E. III Cheatham, and et al. . 2016. AMBER 2016. (2016). University of California, San Francisco.
[8]
K. H. Choi . 2012. Viral Polymerases. Adv. Exp. Med. Biol. Vol. 726 (2012), 267--304.
[9]
C. Chothia and A. M. Lesk . 1986. The relation between the divergence of sequence and structure in proteins. The EMBO Journal, Vol. 5, 4 (1986), 823--826.
[10]
P. R. Daga, Patel. R. Y., and R. J. Doerksen . 2018. Template-based Protein Modeling: Recent Methodological Advances. Curr. Top. Med. Chem. Vol. 10 (2018), 84--94.
[11]
I. W. Davis, A. Leaver-Fay, V. B. Chen, J. N. Block, and et al. . 2007. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. Vol. 35(Web Server issue) (2007), W375--83.
[12]
J. Eickholt, X. Deng, and J. Cheng . 2011. DoBo: Protein domain boundary prediction by integrating evolutionary signals and machine learning. BMC Bioinf. Vol. 12 (2011), 43.
[13]
R. D. Finn, P. Coggill, R. Y. Eberhardt, S. R. Eddy, and et al. . 2016. The Pfam protein families database: towards a more sustainable future. Nucl. Acids Res. Vol. 44 (2016), D279--D285.
[14]
M. K"allberg, H. Wang, S. Wang, J. Peng, and et al. . 2012. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. Vol. 7 (2012), 1511--22.
[15]
R. L. Marsden, L. J. McGuffin, and D. T. Jones . 2009. Rapid protein domain assignment from amino acid sequence using predicted secondary structure. Protein Sci. Vol. 11 (2009), 2814--2824.
[16]
G. Miao, J. Zander, K. W. Sung, and B. Slimane . 2016. Fundamentals of Mobile Data Networks. Cambridge University Press.
[17]
K. M.S. Misura and D. Baker . 2005. Progress and challenges in high-resolution refinement of protein structure models. Proteins: Struct., Func. and Bio. Vol. 59, 1 (2005), 15--29.
[18]
J. Mongan, D. A. Case, and J. A. McCammon . 2004. Constant pH molecular dynamics in generalized Born implicit solvent. J. Comput. Chem. Vol. 25 (2004), 2038--2048.
[19]
B. Morin, B. Coutard, M. Lelke, and et al. . 2010. The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog Vol. 6 (2010), e1001038.
[20]
R. Müller, O. Poch, M. Delarue, D. H. Bishop, and M. Bouloy . 1994. Rift-Valley Fever Virus L-Segment - Correction of the Sequence and Possible Functional-Role of Newly Identified Regions Conserved in RNA-Dependent Polymerases. J. Gen. Virol., Pt 6 Vol. 75 (1994), 1345--1352.
[21]
B. Olson, K. A. De Jong, and A. Shehu . 2013. Off-Lattice Protein Structure Prediction with Homologous Crossover. ACM, New York, NY. 287--294 pages.
[22]
B. Olson and A. Shehu . 2013. Multi-Objective Stochastic Search for Sampling Local Minima in the Protein Energy Surface. ACM,Washington, D.C. 430--439 pages.
[23]
J. Peng and J. Xu . 2011. Raptorx: Exploiting structure information for protein alignment by statistical inference. Proteins Vol. 79 (2011), 161--171.
[24]
E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin . 2004. UCSF Chimera: A visualization system for exploratory research and analysis. J. Comput. Chem., Vol. 25, 13 (2004), 1605--1612.
[25]
A. Roy, A. Kucukural, and Y. Zhang . 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. Vol. 5 (2010), 725--738.
[26]
J. Schultz, F. Milpetz, P. Bork, and C. P. Ponting . 1998. SMART, a simple modular architecture research tool: identification of signaling domains. PNAS Vol. 95 (1998), 5857--5864.
[27]
A. Shehu . 2010. Protein Structure Prediction: Method and Algorithms, Eds. Rangwala, H. and Karypis, G.Wiley Book Series on Bioinformatics, Hoboken, NJ.
[28]
D. Shortle, K. T. Simons, and D. Baker . 1998. Clustering of low-energy conformations near the native structures of small proteins. PNAS Vol. 95 (1998), 11158--11162.
[29]
M. Suyama and O. Ohara . 2003. DomCut: prediction of inter-domain linker regions in amino acid sequences. Bioinformatics Vol. 19 (2003), 673--4.
[30]
V. Tsui and D. A. Case . 2001. Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers Vol. 56 (2001), 275--291.
[31]
S. Venkataraman, B. V. L. S. Prasad, and R. Selvarajan . 2018. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Viruses, Vol. 10, 2 (2018), E76.
[32]
Y. Wang, J. Wang, R. Li, Q. Shi, Z. Xue, and Y. Zhang . 2017. ThreaDomEx: a unified platform for predicting continuous and discontinuous protein domains by multiple-threading and segment assembly. Nucl. Acids Res. Vol. 45 (2017), W400--W407.
[33]
A. M. Wollacott, A. Zanghellini, P. Murphy, and D. Baker . 2007. Prediction of structures of multidomain proteins from structures of the individual domains. Protein Sci Vol. 16 (2007), 165--175.
[34]
D. Xu, L. Jaroszewski, Z. Li, and A. Godzik . 2015. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain-domain interaction prediction. Bioinformatics Vol. 31 (2015), 2098--2105.
[35]
D. Xu and Y. Zhang . 2012. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins: Struct., Func. and Bio. Vol. 80, 7 (2012), 1715--1735.
[36]
Y. Ye and A. Godzik . 2003. Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics, Vol. 19, Suppl 2 (2003), ii246--ii255.
[37]
A. Zamoto-Niikura, K. Terasaki, T. Ikegami, C. J. Peters, and S. Makino . 2009. Rift Valley Fever Virus L Protein Forms a Biologically Active Oligomer. J Virol, Vol. 83, 24 (2009), 12779--12789.
[38]
Y. Zhang . 2014. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Proteins: Suppl. 2 Vol. 82 (2014), 175--187.

Cited By

View all
  • (2019)Modeling the Tertiary Structure of the Rift Valley Fever Virus L ProteinMolecules10.3390/molecules2409176824:9(1768)Online publication date: 7-May-2019

Index Terms

  1. Modeling the Tertiary Structure of a Multi-domain Protein: Structure Prediction of Multi-domain Proteins

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    BCB '18: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics
    August 2018
    727 pages
    ISBN:9781450357944
    DOI:10.1145/3233547
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 15 August 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. multi-domain protein
    2. structure determination
    3. tertiary structure

    Qualifiers

    • Research-article

    Funding Sources

    • George Mason University

    Conference

    BCB '18
    Sponsor:

    Acceptance Rates

    BCB '18 Paper Acceptance Rate 46 of 148 submissions, 31%;
    Overall Acceptance Rate 254 of 885 submissions, 29%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)7
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 13 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2019)Modeling the Tertiary Structure of the Rift Valley Fever Virus L ProteinMolecules10.3390/molecules2409176824:9(1768)Online publication date: 7-May-2019

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media