skip to main content
10.1145/3233547.3233710acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

MAPS: Analyzing Peptide Binding Subsites in Major Histocompatibility Complexes

Published:15 August 2018Publication History

ABSTRACT

The adaptive immune system is a defense system against repeated infection. In order to trigger the immune response, antigen peptides from the infecting agent must first be recognized by the Major Histocompatibility Complex (MHC) proteins. Identifying peptides that bind to MHC class II is thus a critical step in vaccine development. We hypothesize that comparing individual subsites of the peptide binding groove could predict the individual amino acids of possible antigens. This modularized approach to individual subsites could reduce the amount of training data needed for accurate classification while also reducing computing times associated with molecular simulation and docking. To test this hypothesis, we evaluated the capability of two classification techniques and multiple modular representations of the MHC subsites to correctly classify the binding preference categories of P1 subsites of MHC class II structures. Our results shows that the average accuracies are 0.87 for K-mean and 0.95 for SVM with all feature vector configurations. Our results demonstrate that accurate predictions on individual binding subsites is possible, pointing to larger scale applications predicting whole-peptide preferences.

References

  1. S. Aldulaijan and J. A. Platts . 2010. Theoretical prediction of a peptide binding to major histocompatibility complex II. J Mol Graph Model Vol. 29, 2 (2010), 240--5.Google ScholarGoogle ScholarCross RefCross Ref
  2. M Atanasova, I Dimitrov, DR Flower, and I Doytchinova . 2011. MHC class II binding prediction by molecular docking. Molecular Informatics Vol. 30, 4 (2011), 368--375.Google ScholarGoogle ScholarCross RefCross Ref
  3. M. Atanasova, A. Patronov, I. Dimitrov, D. R. Flower, and I. Doytchinova . 2013. EpiDOCK: a molecular docking-based tool for MHC class II binding prediction. Protein Eng Des Sel Vol. 26, 10 (2013), 631--4.Google ScholarGoogle ScholarCross RefCross Ref
  4. M. Bhasin and G. P. Raghava . 2004. SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence. Bioinformatics Vol. 20, 3 (2004), 421--3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. PJ Bjorkman, MA Saper, B Samraoui, WS Bennett, JL Strominger, and DC Wiley . 1987. The foreign antigen binding site and T cell recognition regions. Nature Vol. 329 (1987), 512--518.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. J. Bordner . 2010. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. PLoS One Vol. 5, 12 (2010), e14383.Google ScholarGoogle ScholarCross RefCross Ref
  7. V. Brusic, G. Rudy, G. Honeyman, J. Hammer, and L. Harrison . 1998. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics Vol. 14, 2 (1998), 121--30.Google ScholarGoogle ScholarCross RefCross Ref
  8. B. Y. Chen . 2014. VASP-E: specificity annotation with a volumetric analysis of electrostatic isopotentials. PLoS Comput Biol Vol. 10, 8 (2014), 1--17.Google ScholarGoogle ScholarCross RefCross Ref
  9. Brian Y Chen and Barry Honig . 2010. VASP: a volumetric analysis of surface properties yields insights into protein-ligand binding specificity. PLoS Comput Biol Vol. 6, 8 (2010), 11.Google ScholarGoogle ScholarCross RefCross Ref
  10. I. Doytchinova, P. Petkov, I. Dimitrov, M. Atanasova, and D. R. Flower . 2011. HLA-DP2 binding prediction by molecular dynamics simulations. Protein Sci Vol. 20, 11 (2011), 1918--28.Google ScholarGoogle ScholarCross RefCross Ref
  11. Y. El-Manzalawy, D. Dobbs, and V. Honavar . 2008. On evaluating MHC-II binding peptide prediction methods. PLoS One Vol. 3, 9 (2008), e3268.Google ScholarGoogle ScholarCross RefCross Ref
  12. K. C. Garcia and E. J. Adams . 2005. How the T cell receptor sees antigen - A structural view. Cell Vol. 122, 3 (2005), 333--336.Google ScholarGoogle ScholarCross RefCross Ref
  13. Stephen J Goodswen, Paul J Kennedy, and John T Ellis . 2014. Enhancing In Silico Protein-Based Vaccine Discovery for Eukaryotic Pathogens Using Predicted Peptide-MHC Binding and Peptide Conservation Scores. PloS one Vol. 9, 12 (2014), e115745.Google ScholarGoogle ScholarCross RefCross Ref
  14. Juergen Hammer, Charles Belunis, David Bolin, Joanne Papadopoulos, Robert Walsky, Jacqueline Higelin, Waleed Danho, Francesco Sinigaglia, and Zoltan A Nagy . 1994 a. High-affinity binding of short peptides to major histocompatibility complex class II molecules by anchor combinations. Proceedings of the National Academy of Sciences Vol. 91, 10 (1994), 4456--4460.Google ScholarGoogle ScholarCross RefCross Ref
  15. J. Hammer, E. Bono, F. Gallazzi, C. Belunis, Z. Nagy, and F. Sinigaglia . 1994 b. Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J Exp Med Vol. 180, 6 (1994), 2353--8.Google ScholarGoogle ScholarCross RefCross Ref
  16. Jing Huang and Feng Shi . 2005. Prediction of MHC class II epitopes using Fourier analysis and support vector machines. Springer, 21--30.Google ScholarGoogle Scholar
  17. Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren . 2002. Dual contouring of hermite data. In ACM transactions on graphics (TOG), Vol. Vol. 21. ACM, 339--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. E. Karosiene, M. Rasmussen, T. Blicher, O. Lund, S. Buus, and M. Nielsen . 2013. NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics Vol. 65, 10 (2013), 711--24.Google ScholarGoogle Scholar
  19. H. H. Lin, G. L. Zhang, S. Tongchusak, E. L. Reinherz, and V. Brusic . 2008. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics Vol. 9 Suppl 12 (2008), S22.Google ScholarGoogle Scholar
  20. Keith W Marshall, K Jeff Wilson, James Liang, Andrea Woods, Dennis Zaller, and Jonathan B Rothbard . 1995. Prediction of peptide affinity to HLA DRB1* 0401. The journal of immunology Vol. 154, 11 (1995), 5927--5933.Google ScholarGoogle Scholar
  21. M. Nielsen, O. Lund, S. Buus, and C. Lundegaard . 2010. MHC class II epitope predictive algorithms. Immunology Vol. 130, 3 (2010), 319--28.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. Nielsen, C. Lundegaard, P. Worning, C. S. Hvid, K. Lamberth, S. Buus, S. Brunak, and O. Lund . 2004. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics Vol. 20, 9 (2004), 1388--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Noguchi, R. Kato, T. Hanai, Y. Matsubara, H. Honda, V. Brusic, and T. Kobayashi . 2002. Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. J Biosci Bioeng Vol. 94, 3 (2002), 264--70.Google ScholarGoogle ScholarCross RefCross Ref
  24. A. Patronov, I. Dimitrov, D. R. Flower, and I. Doytchinova . 2011. Peptide binding prediction for the human class II MHC allele HLA-DP2: a molecular docking approach. BMC Struct Biol Vol. 11 (2011), 32.Google ScholarGoogle ScholarCross RefCross Ref
  25. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay . 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research Vol. 12 (2011), 2825--2830. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Bjoern Peters and Alessandro Sette . 2005. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC bioinformatics Vol. 6, 1 (2005), 132.Google ScholarGoogle Scholar
  27. Björn Peters, Weiwei Tong, John Sidney, Alessandro Sette, and Zhiping Weng . 2003. Examining the independent binding assumption for binding of peptide epitopes to MHC-I molecules. Bioinformatics Vol. 19, 14 (2003), 1765--1772.Google ScholarGoogle ScholarCross RefCross Ref
  28. J Schaer and MG Stone . 1991. Face traverses and a volume algorithm for polyhedra. Springer, 290--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. D. Schafroth and C. A. Floudas . 2004. Predicting peptide binding to MHC pockets via molecular modeling, implicit solvation, and global optimization. Proteins Vol. 54, 3 (2004), 534--56.Google ScholarGoogle ScholarCross RefCross Ref
  30. Harpreet Singh and GPS Raghava . 2001. ProPred: prediction of HLA-DR binding sites. Bioinformatics Vol. 17, 12 (2001), 1236--1237.Google ScholarGoogle ScholarCross RefCross Ref
  31. Satarudra Prakash Singh and Bhartendu Nath Mishra . 2012. Prediction model of MHC Class-II binding peptide motifs using sequence weighting method for vaccine design. In Advances in Computing and Communications (ICACC), 2012 International Conference on. IEEE, 234--237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. J. Stern, J. H. Brown, T. S. Jardetzky, J. C. Gorga, R. G. Urban, J. L. Strominger, and D. C. Wiley . 1994. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature Vol. 368, 6468 (1994), 215--221.Google ScholarGoogle Scholar
  33. Tiziana Sturniolo, Elisa Bono, Jiayi Ding, Laura Raddrizzani, Oezlem Tuereci, Ugur Sahin, Michael Braxenthaler, Fabio Gallazzi, Maria Pia Protti, and Francesco Sinigaglia . 1999. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nature biotechnology Vol. 17, 6 (1999), 555--561.Google ScholarGoogle Scholar
  34. J. L. Sussman, D. Lin, J. Jiang, N. O. Manning, J. Prilusky, O. Ritter, and E. E. Abola . 1998. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr Vol. 54, Pt 6 Pt 1 (1998), 1078--84.Google ScholarGoogle ScholarCross RefCross Ref
  35. Herbert B Voelcker and Aristides AG Requicha . 1977. Geometric modeling of mechanical parts and processes. Computer Vol. 10, 12 (1977), 48--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. An-Suei Yang and Barry Honig . 2000. An integrated approach to the analysis and modeling of protein sequences and structures. I. Protein structural alignment and a quantitative measure for protein structural distance. Journal of molecular biology Vol. 301, 3 (2000), 665--678.Google ScholarGoogle ScholarCross RefCross Ref
  37. Hao Zhang, Ole Lund, and Morten Nielsen . 2009. The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics Vol. 25, 10 (2009), 1293--1299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. H. Zhang, P. Wang, N. Papangelopoulos, Y. Xu, A. Sette, P. E. Bourne, O. Lund, J. Ponomarenko, M. Nielsen, and B. Peters . 2010. Limitations of Ab initio predictions of peptide binding to MHC class II molecules. PLoS One Vol. 5, 2 (2010), e9272.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. MAPS: Analyzing Peptide Binding Subsites in Major Histocompatibility Complexes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        BCB '18: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics
        August 2018
        727 pages
        ISBN:9781450357944
        DOI:10.1145/3233547

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 August 2018

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        BCB '18 Paper Acceptance Rate46of148submissions,31%Overall Acceptance Rate254of885submissions,29%
      • Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader