skip to main content
10.1145/3233547.3233710acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

MAPS: Analyzing Peptide Binding Subsites in Major Histocompatibility Complexes

Published: 15 August 2018 Publication History

Abstract

The adaptive immune system is a defense system against repeated infection. In order to trigger the immune response, antigen peptides from the infecting agent must first be recognized by the Major Histocompatibility Complex (MHC) proteins. Identifying peptides that bind to MHC class II is thus a critical step in vaccine development. We hypothesize that comparing individual subsites of the peptide binding groove could predict the individual amino acids of possible antigens. This modularized approach to individual subsites could reduce the amount of training data needed for accurate classification while also reducing computing times associated with molecular simulation and docking. To test this hypothesis, we evaluated the capability of two classification techniques and multiple modular representations of the MHC subsites to correctly classify the binding preference categories of P1 subsites of MHC class II structures. Our results shows that the average accuracies are 0.87 for K-mean and 0.95 for SVM with all feature vector configurations. Our results demonstrate that accurate predictions on individual binding subsites is possible, pointing to larger scale applications predicting whole-peptide preferences.

References

[1]
S. Aldulaijan and J. A. Platts . 2010. Theoretical prediction of a peptide binding to major histocompatibility complex II. J Mol Graph Model Vol. 29, 2 (2010), 240--5.
[2]
M Atanasova, I Dimitrov, DR Flower, and I Doytchinova . 2011. MHC class II binding prediction by molecular docking. Molecular Informatics Vol. 30, 4 (2011), 368--375.
[3]
M. Atanasova, A. Patronov, I. Dimitrov, D. R. Flower, and I. Doytchinova . 2013. EpiDOCK: a molecular docking-based tool for MHC class II binding prediction. Protein Eng Des Sel Vol. 26, 10 (2013), 631--4.
[4]
M. Bhasin and G. P. Raghava . 2004. SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence. Bioinformatics Vol. 20, 3 (2004), 421--3.
[5]
PJ Bjorkman, MA Saper, B Samraoui, WS Bennett, JL Strominger, and DC Wiley . 1987. The foreign antigen binding site and T cell recognition regions. Nature Vol. 329 (1987), 512--518.
[6]
A. J. Bordner . 2010. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. PLoS One Vol. 5, 12 (2010), e14383.
[7]
V. Brusic, G. Rudy, G. Honeyman, J. Hammer, and L. Harrison . 1998. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics Vol. 14, 2 (1998), 121--30.
[8]
B. Y. Chen . 2014. VASP-E: specificity annotation with a volumetric analysis of electrostatic isopotentials. PLoS Comput Biol Vol. 10, 8 (2014), 1--17.
[9]
Brian Y Chen and Barry Honig . 2010. VASP: a volumetric analysis of surface properties yields insights into protein-ligand binding specificity. PLoS Comput Biol Vol. 6, 8 (2010), 11.
[10]
I. Doytchinova, P. Petkov, I. Dimitrov, M. Atanasova, and D. R. Flower . 2011. HLA-DP2 binding prediction by molecular dynamics simulations. Protein Sci Vol. 20, 11 (2011), 1918--28.
[11]
Y. El-Manzalawy, D. Dobbs, and V. Honavar . 2008. On evaluating MHC-II binding peptide prediction methods. PLoS One Vol. 3, 9 (2008), e3268.
[12]
K. C. Garcia and E. J. Adams . 2005. How the T cell receptor sees antigen - A structural view. Cell Vol. 122, 3 (2005), 333--336.
[13]
Stephen J Goodswen, Paul J Kennedy, and John T Ellis . 2014. Enhancing In Silico Protein-Based Vaccine Discovery for Eukaryotic Pathogens Using Predicted Peptide-MHC Binding and Peptide Conservation Scores. PloS one Vol. 9, 12 (2014), e115745.
[14]
Juergen Hammer, Charles Belunis, David Bolin, Joanne Papadopoulos, Robert Walsky, Jacqueline Higelin, Waleed Danho, Francesco Sinigaglia, and Zoltan A Nagy . 1994 a. High-affinity binding of short peptides to major histocompatibility complex class II molecules by anchor combinations. Proceedings of the National Academy of Sciences Vol. 91, 10 (1994), 4456--4460.
[15]
J. Hammer, E. Bono, F. Gallazzi, C. Belunis, Z. Nagy, and F. Sinigaglia . 1994 b. Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J Exp Med Vol. 180, 6 (1994), 2353--8.
[16]
Jing Huang and Feng Shi . 2005. Prediction of MHC class II epitopes using Fourier analysis and support vector machines. Springer, 21--30.
[17]
Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren . 2002. Dual contouring of hermite data. In ACM transactions on graphics (TOG), Vol. Vol. 21. ACM, 339--346.
[18]
E. Karosiene, M. Rasmussen, T. Blicher, O. Lund, S. Buus, and M. Nielsen . 2013. NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics Vol. 65, 10 (2013), 711--24.
[19]
H. H. Lin, G. L. Zhang, S. Tongchusak, E. L. Reinherz, and V. Brusic . 2008. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics Vol. 9 Suppl 12 (2008), S22.
[20]
Keith W Marshall, K Jeff Wilson, James Liang, Andrea Woods, Dennis Zaller, and Jonathan B Rothbard . 1995. Prediction of peptide affinity to HLA DRB1* 0401. The journal of immunology Vol. 154, 11 (1995), 5927--5933.
[21]
M. Nielsen, O. Lund, S. Buus, and C. Lundegaard . 2010. MHC class II epitope predictive algorithms. Immunology Vol. 130, 3 (2010), 319--28.
[22]
M. Nielsen, C. Lundegaard, P. Worning, C. S. Hvid, K. Lamberth, S. Buus, S. Brunak, and O. Lund . 2004. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics Vol. 20, 9 (2004), 1388--97.
[23]
H. Noguchi, R. Kato, T. Hanai, Y. Matsubara, H. Honda, V. Brusic, and T. Kobayashi . 2002. Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. J Biosci Bioeng Vol. 94, 3 (2002), 264--70.
[24]
A. Patronov, I. Dimitrov, D. R. Flower, and I. Doytchinova . 2011. Peptide binding prediction for the human class II MHC allele HLA-DP2: a molecular docking approach. BMC Struct Biol Vol. 11 (2011), 32.
[25]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay . 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research Vol. 12 (2011), 2825--2830.
[26]
Bjoern Peters and Alessandro Sette . 2005. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC bioinformatics Vol. 6, 1 (2005), 132.
[27]
Björn Peters, Weiwei Tong, John Sidney, Alessandro Sette, and Zhiping Weng . 2003. Examining the independent binding assumption for binding of peptide epitopes to MHC-I molecules. Bioinformatics Vol. 19, 14 (2003), 1765--1772.
[28]
J Schaer and MG Stone . 1991. Face traverses and a volume algorithm for polyhedra. Springer, 290--297.
[29]
H. D. Schafroth and C. A. Floudas . 2004. Predicting peptide binding to MHC pockets via molecular modeling, implicit solvation, and global optimization. Proteins Vol. 54, 3 (2004), 534--56.
[30]
Harpreet Singh and GPS Raghava . 2001. ProPred: prediction of HLA-DR binding sites. Bioinformatics Vol. 17, 12 (2001), 1236--1237.
[31]
Satarudra Prakash Singh and Bhartendu Nath Mishra . 2012. Prediction model of MHC Class-II binding peptide motifs using sequence weighting method for vaccine design. In Advances in Computing and Communications (ICACC), 2012 International Conference on. IEEE, 234--237.
[32]
L. J. Stern, J. H. Brown, T. S. Jardetzky, J. C. Gorga, R. G. Urban, J. L. Strominger, and D. C. Wiley . 1994. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature Vol. 368, 6468 (1994), 215--221.
[33]
Tiziana Sturniolo, Elisa Bono, Jiayi Ding, Laura Raddrizzani, Oezlem Tuereci, Ugur Sahin, Michael Braxenthaler, Fabio Gallazzi, Maria Pia Protti, and Francesco Sinigaglia . 1999. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nature biotechnology Vol. 17, 6 (1999), 555--561.
[34]
J. L. Sussman, D. Lin, J. Jiang, N. O. Manning, J. Prilusky, O. Ritter, and E. E. Abola . 1998. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr Vol. 54, Pt 6 Pt 1 (1998), 1078--84.
[35]
Herbert B Voelcker and Aristides AG Requicha . 1977. Geometric modeling of mechanical parts and processes. Computer Vol. 10, 12 (1977), 48--57.
[36]
An-Suei Yang and Barry Honig . 2000. An integrated approach to the analysis and modeling of protein sequences and structures. I. Protein structural alignment and a quantitative measure for protein structural distance. Journal of molecular biology Vol. 301, 3 (2000), 665--678.
[37]
Hao Zhang, Ole Lund, and Morten Nielsen . 2009. The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics Vol. 25, 10 (2009), 1293--1299.
[38]
H. Zhang, P. Wang, N. Papangelopoulos, Y. Xu, A. Sette, P. E. Bourne, O. Lund, J. Ponomarenko, M. Nielsen, and B. Peters . 2010. Limitations of Ab initio predictions of peptide binding to MHC class II molecules. PLoS One Vol. 5, 2 (2010), e9272.

Index Terms

  1. MAPS: Analyzing Peptide Binding Subsites in Major Histocompatibility Complexes

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      BCB '18: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics
      August 2018
      727 pages
      ISBN:9781450357944
      DOI:10.1145/3233547
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 15 August 2018

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. specificity annotation
      2. structure comparison

      Qualifiers

      • Research-article

      Conference

      BCB '18
      Sponsor:

      Acceptance Rates

      BCB '18 Paper Acceptance Rate 46 of 148 submissions, 31%;
      Overall Acceptance Rate 254 of 885 submissions, 29%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 44
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 20 Jan 2025

      Other Metrics

      Citations

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media