skip to main content
research-article

Geometry-aware metropolis light transport

Published:04 December 2018Publication History
Skip Abstract Section

Abstract

Markov chain Monte Carlo (MCMC) rendering utilizes a sequence of correlated path samples which is obtained by iteratively mutating the current state to the next. The efficiency of MCMC rendering depends on how well the mutation strategy is designed to adapt to the local structure of the state space. We present a novel MCMC rendering method that automatically adapts the step sizes of the mutations to the geometry of the rendered scene. Our geometry-aware path space perturbation largely avoids tentative samples with zero contribution due to occlusion. Our method limits the mutation step size by estimating the maximum opening angle of a cone, centered around a segment of a light transport path, where no geometry obstructs visibility. This geometry-aware mutation increases the acceptance rates, while not degrading the sampling quality. As this cone estimation introduces a considerable overhead if done naively, to make our approach efficient, we discuss and analyze fast approximate methods for cone angle estimation which utilize the acceleration structure already present for the ray-geometry intersection. Our new approach, integrated into the framework of Metropolis light transport, can achieve results with lower error and less artifact in equal time compared to current path space mutation techniques.

Skip Supplemental Material Section

Supplemental Material

References

  1. John Amanatides. 1984. Ray Tracing with Cones. Computer Graphics (Proc. SIGGRAPH) 18, 3 (1984), 129--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. James Arvo. 1986. Backward ray tracing. In Developments in Ray Tracing, ACM SIGGRAPH Course Notes. 259--263.Google ScholarGoogle Scholar
  3. Michel Betancourt. 2017. A Conceptual Introduction to Hamiltonian Monte Carlo. ArXiv e-prints (Jan. 2017). arXiv:stat.ME/1701.02434Google ScholarGoogle Scholar
  4. Benedikt Bitterli, Wenzel Jakob, Jan Novák, and Wojciech Jarosz. 2017. Reversible Jump Metropolis Light Transport Using Inverse Mappings. ACM Transactions on Graphics (Proc. SIGGRAPH) 37, 1, Article 1 (2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. 2011. Interactive Indirect Illumination Using Voxel Cone Tracing. Computer Graphics Forum (Proc. Pacific Graphics) 30, 7 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. 1987. Hybrid Monte Carlo. Physics Letters B 195, 2 (1987), 216 -- 222.Google ScholarGoogle ScholarCross RefCross Ref
  7. Charles J. Geyer. 1992. Practical Markov Chain Monte Carlo. Statist. Sci. 7, 4 (11 1992), 473--483.Google ScholarGoogle Scholar
  8. Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher. 2014. Multiplexed Metropolis Light Transport. ACM Transactions on Graphics (Proc. SIGGRAPH) 33, 4, Article 100 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Johannes Hanika, Anton S. Kaplanyan, and Carsten Dachsbacher. 2015. Improved Half Vector Space Light Transport. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 34, 4 (2015), 65--74.Google ScholarGoogle Scholar
  10. Wilfred K. Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1 (1970), 97--109.Google ScholarGoogle ScholarCross RefCross Ref
  11. Wenzel Jakob and Stephen Marschner. 2012. Manifold exploration: a Markov chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Transactions on Graphics (Proc. SIGGRAPH) 31, 4, Article 58 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. James T. Kajiya. 1986. The rendering equation. Computer Graphics (Proceedings of SIGGRAPH '86) 20, 4 (1986), 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Anton Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. ACM Transactions on Graphics (Proc. SIGGRAPH) 33, 4 (2014), 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A simple and robust mutation strategy for the Metropolis light transport algorithm. Computer Graphics Forum 21, 3 (2002), 531--540.Google ScholarGoogle ScholarCross RefCross Ref
  15. Eric P. Lafortune and Yves D. Willems. 1993. Bi-Directional Path Tracing. In Compugraphics '93. 145--153.Google ScholarGoogle Scholar
  16. Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Durand. 2015. Anisotropic Gaussian Mutations for Metropolis Light Transport Through Hessian-Hamiltonian Dynamics. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 34, 6 (2015), 209:1--209:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward Teller. 1953. Equation of state calculations by fast computing machines. 21, 6 (1953), 1087--1092.Google ScholarGoogle ScholarCross RefCross Ref
  18. Benjamin Mora. 2011. Naive Ray-tracing: A Divide-and-conquer Approach. ACM Transactions on Graphics 30, 5, Article 117 (2011), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hisanari Otsu, Anton S. Kaplanyan, Johannes Hanika, Carsten Dachsbacher, and Toshiya Hachisuka. 2017. Fusing State Spaces for Markov Chain Monte Carlo Rendering. ACM Transactions on Graphics (Proc. SIGGRAPH) 36, 4, Article 74 (2017), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jacopo Pantaleoni. 2017. Charted Metropolis Light Transport. ACM Transactions on Graphics (Proc. SIGGRAPH) 36, 4, Article 75 (2017), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. David Roger, Ulf Assarsson, and Nicolas Holzschuch. 2007. Whitted Ray-tracing for Dynamic Scenes Using a Ray-space Hierarchy on the GPU. In Proc. Eurographics Symposium on Rendering. 99--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Eric Veach and Leonidas J. Guibas. 1994. Bidirectional Estimators for Light Transport. In Proc. Eurographics Workshop on Rendering. 147--162.Google ScholarGoogle Scholar
  23. Eric Veach and Leonidas J. Guibas. 1995. Optimally combining sampling techniques for Monte Carlo rendering. Proc. SIGGRAPH '95 (1995), 419--428. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. In SIGGRAPH '97. 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Geometry-aware metropolis light transport

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 37, Issue 6
      December 2018
      1401 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3272127
      Issue’s Table of Contents

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 December 2018
      Published in tog Volume 37, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader