skip to main content
10.1145/3274783.3274837acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

InK: Reactive Kernel for Tiny Batteryless Sensors

Published:04 November 2018Publication History

ABSTRACT

Tiny energy harvesting battery-free devices promise maintenance free operation for decades, providing swarm scale intelligence in applications from healthcare to building monitoring. These devices operate intermittently because of unpredictable, dynamic energy harvesting environments, failing when energy is scarce. Despite this dynamic operation, current programming models are static; they ignore the event-driven and time-sensitive nature of sensing applications, focusing only on preserving forward progress while maintaining performance. This paper proposes InK; the first reactive kernel that provides a novel way to program these tiny energy harvesting devices that focuses on their main application of event-driven sensing. InK brings an event-driven paradigm shift for batteryless applications, introducing building blocks and abstractions that enable reacting to changes in available energy and variations in sensing data, alongside task scheduling, while maintaining a consistent memory and sense of time. We implemented several event-driven applications for InK, conducted a user study, and benchmarked InK against the state-of-the-art; InK provides up to 14 times more responsiveness and was easier to use. We show that InK enables never before seen batteryless applications, and facilitates more sophisticated batteryless programs.

References

  1. 2018. InK Website. https://github.com/tudssl/ink. Last accessed: Sep. 20, 2018.Google ScholarGoogle Scholar
  2. 2018. Intermittently-Powered Robot Website. https://github.com/tudssl/iprobot. Last accessed: Sep. 20, 2018.Google ScholarGoogle Scholar
  3. Adafruit. 2016. Silicon SPW2430HR5H-B MEMS Microphone Breakout Board (SPW2430). https://www.adafruit.com/product/2716. Last accessed: Apr. 1, 2018.Google ScholarGoogle Scholar
  4. Omid Ardakanian, Arka Bhattacharya, and David Culler. 2016. Non-Intrusive Techniques for Establishing Occupancy Related Energy Savings in Commercial Buildings. In Proc. BuildSys. ACM, Palo Alto, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Domenico Balsamo, Alex S. Weddell, Anup Das, Alberto Rodriguez Arreola, Davide Brunelli, Bashir M. Al-Hashimi, Geoff V. Merrett, and Luca Benini. 2016. Hibernus++: a Self-calibrating and Adaptive System for Transiently-powered Embedded Devices. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 35, 12 (Dec. 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Domenico Balsamo, Alex S. Weddell, Geoff V. Merrett, Bashir M. Al-Hashimi, Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining Computation During Intermittent Supply for Energy-harvesting Systems. IEEE Embedded Syst. Lett. 7, 1 (March 2015).Google ScholarGoogle ScholarCross RefCross Ref
  7. Naveed Bhatti and Luca Mottola. 2017. HarvOS: Efficient Code Instrumentation for Transiently-powered Embedded Devices. In Proc. IPSN. ACM/IEEE, Pittsburgh, PA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Remo Brühwiler, Benjamin Goldberg, Neel Doshi, Onur Ozcan, Noah Jafferis, Michael Karpelson, and Robert J. Wood. 2015. Feedback Control of a Legged Microrobot with On-board Sensing. In Proc. IROS. IEEE, Hamburg, Germany.Google ScholarGoogle Scholar
  9. Michael Buettner, Ben Greenstein, and David Wetherall. 2011. Dewdrop: an Energy-aware Runtime for Computational RFID. In Proc. NSDI. USENIX, Boston, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gregory Chen, Hassan Ghaed, Razi M. Haque, Michael Wieckowski, Yejoong Kim, Gyouho Kim, David Fick, Daeyeon Kim, Mingoo Seok, Kensall Wise, David Blaauw, and Dennis Sylvester. 2011. A Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor. In Proc. ISSCC. IEEE, San Francisco, CA, USA.Google ScholarGoogle ScholarCross RefCross Ref
  11. Yang Chen, Omprakash Gnawali, Maria Kazandjieva, Philip Levis, and John Regehr. 2009. Surviving Sensor Network Software Faults. In Proc. SOSP. ACM, Big Sky, MT, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable Intermittent Programs. In Proc. OOPSLA. ACM, Amsterdam, Netherlands. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfigurable Energy Storage Architecture for Energy-harvesting Devices. In Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '18). ACM, New York, NY, USA, 767--781. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Powercast Corp. 2014. Powercast Hardware. http://www.powercastco. com. Last accessed: Mar. 30, 2018.Google ScholarGoogle Scholar
  15. Samuel DeBruin, Bradford Campbell, and Prabal Dutta. 2013. Monjolo: An Energy-harvesting Energy Meter Architecture. In Proc. SenSys. ACM, Rome, Italy. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Artem Dementyev, Hsin-Liu Cindy Kao, Inrak Choi, Deborah Ajilo, Maggie Xu, Joseph A Paradiso, Chris Schmandt, and Sean Follmer. 2016. Rovables: Miniature On-Body Robots as Mobile Wearables. In Proc. UIST. ACM, Tokyo, Japan. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Adam Dunkels, Björn Grönvall, and Thiemo Voigt. 2004. Contiki - a Lightweight and Flexible Operating System for Tiny Networked Sensors. In Proc. LCN. IEEE, Tampa, FL, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Shyamnath Gollakota, Matthew Reynolds, Joshua Smith, and David Wetherall. 2014. The Emergence of RF-Powered Computing. Computer 47, 1 (Jan. 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Josiah Hester, Timothy Scott, and Jacob Sorber. 2014. Ekho: Realistic and Repeatable Experimentation for Tiny Energy-Harvesting Sensors. In Proc. SenSys. ACM, Memphis, TN, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Batteryless Internet-of-Things. In Proc. SenSys. ACM, Delft, The Netherlands. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Josiah Hester and Lanny Sitanayah Jacob Sorber. 2015. Tragedy of the Coulombs: Federating Energy Storage for Tiny, Intermittently-Powered Sensors. In Proc. SenSys. ACM, Seoul, South Korea. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely Execution on Intermittently Powered Batteryless Sensors. In Proc. SenSys. ACM, Delft, The Netherlands. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Sitanayah, Daniel Holcomb, Kevin Fu, Wayne P. Burleson, and Jacob Sorber. 2016. Persistent Clocks for Batteryless Sensing Devices. ACM Trans. Emb. Comput. Syst. 15, 4 (Aug. 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Matthew Hicks. 2017. Clank: Architectural Support for Intermittent Computation. In Proc. ISCA. ACM, Toronto, ON, Canada. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Impinj Inc. 2018. Impinj Speedway R420 RFID Reader Product Information. https://www.impinj.com/platform/connectivity/speedway-r420/. Last accessed: Apr. 8, 2018.Google ScholarGoogle Scholar
  26. Texas Instruments. 2015. MSP430FR5969 LaunchPad Development Kit. http://www.ti.com/tool/msp-exp430fr5969. Last accessed: Apr. 30, 2018.Google ScholarGoogle Scholar
  27. IXYS. 2011. IXOLAR High Efficiency SolarBIT Solar Panel. http://www.ti.com/lit/ug/tidu383/tidu383.pdf. Last accessed: Apr. 2, 2018.Google ScholarGoogle Scholar
  28. Hrishikesh Jayakumar, Arnab Raha, Woo Suk Lee, and Vijay Raghunathan. 2015. Quickrecall: A HW/SW Approach for Computing Across Power Cycles in Transiently Powered Computers. ACM J. Emerg. Technol. Comput. Syst. 12, 1 (July 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Justin Y. Kim, Tyler Colaco, Zendai Kashino, Goldie Nejat, and Beno Benhabib. 2016. mROBerTO: A Modular Millirobot for Swarm-behavior studies. In Proc. IROS. IEEE, Daejeon, Korea.Google ScholarGoogle ScholarCross RefCross Ref
  30. Mathieu Le Goc, Lawrence H. Kim, Ali Parsaei, Jean-Daniel Fekete, Pierre Dragicevic, and Sean Follmer. 2016. Zooids: Building Blocks for Swarm User Interfaces. In Proc. UIST. ACM, Tokyo, Japan. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Philip Levis, Sam Madden, Joseph Polastre, Rober Szewczyk, Kamin Whitehouse, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, and David Culler. 2005. TinyOS: An Operating System for Sensor Networks. In Ambient intelligence, Werner Weber, Jan M. Rabaey, and Emile Aarts (Eds.). Springer, Berlin, Germany.Google ScholarGoogle Scholar
  32. Brandon Lucia and Benjamin Ransford. 2015. A simpler, Safer Programming and Execution Model for Intermittent Systems. In Proc. PLDI. ACM, Portland, OR, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Kaisheng Ma, Xueqing Li, Karthik Swaminathan, Yang Zheng, Shuangchen Li, Yongpan Liu, Yuan Xie, John Jack Sampson, and Vijaykrishnan Narayanan. 2016. Nonvolatile Processor Architectures: Efficient, Reliable Progress with Unstable Power. IEEE Micro 36, 3 (May-Jun. 2016).Google ScholarGoogle ScholarCross RefCross Ref
  34. Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent Execution without Checkpoints. In Proc. OOPSLA. ACM, Vancouver, BC, Canada.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. University of Washington. 2014. WISP 5.0 Wiki. http://wisp5.wikispaces.com. Last accessed: Mar. 30, 2018.Google ScholarGoogle Scholar
  36. Daniel Pickem, Myron Lee, and Magnus Egerstedt. 2015. The GRITSBot in its Natural Habitat - A Multi-robot Testbed. In Proc. ICRA. IEEE, Seattle, WA, USA.Google ScholarGoogle ScholarCross RefCross Ref
  37. Joseph Polastre, Robert Szewczyk, Alan Mainwaring, David Culler, and John Anderson. 2004. Analysis of Wireless Sensor Networks for Habitat Monitoring. In Wireless Sensor Networks, C. S. Raghavendra, Krishna M. Sivalingam, and Taieb Znati (Eds.). Springer, Boston, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. R. Venkatesha Prasad, Shruti Devasenapathy, Vijay S. Rao, and Javad Vazifehdan. 2014. Reincarnation in the Ambiance: Devices and Networks with Energy Harvesting. IEEE Commun. Surveys Tuts. 11, 1 (First Quarter 2014).Google ScholarGoogle Scholar
  39. Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System Support for Long-running Computation on RFID-scale Devices. In Proc. ASPLOS. ACM, Newport Beach, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Michael Rubenstein, Christian Ahler, and Radhika Nagpal. 2012. Kilobot: A Low Cost Scalable Robot System for Collective Behaviors. In Proc. ICRA. IEEE, Saint Paul, MN, USA.Google ScholarGoogle ScholarCross RefCross Ref
  41. Saleae. 2017. Saleae Logic Pro 16 Analyzer. http://downloads.saleae.com/specs/Logic+Pro+16+Data+Sheet.pdf. Last accessed: Mar. 30, 2018.Google ScholarGoogle Scholar
  42. Koen Schaper. 2017. Transiently-powered Battery-free Robot. Master Thesis. Delft University of Technology, Delft, The Netherlands.Google ScholarGoogle Scholar
  43. Faisal Karim Shaikh, Sherali Zeadally, and Ernesto Exposito. 2017. Enabling Technologies for Green Internet of Things. IEEE Syst. J. 11, 2 (June 2017).Google ScholarGoogle ScholarCross RefCross Ref
  44. Joshua R. Smith. 2013. Wirelessly Powered Sensor Networks and Computational RFID. Springer Verlag, New York, NY, USA.Google ScholarGoogle Scholar
  45. Joshua R. Smith, Alanson P. Sample, Pauline S. Powledge, Sumit Roy, and Alexander Mamishev. 2006. A Wirelessly-Powered Platform for Sensing and Computation. In Proc. UbiComp. ACM, Orange County, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Tolga Soyata, Lucian Copeland, and Wendi Heinzelman. 2016. RF Energy Harvesting for Embedded Systems: A Survey of Tradeoffs and Methodology. IEEE Circuits Syst. Mag. 16, 1 (First Quarter 2016).Google ScholarGoogle ScholarCross RefCross Ref
  47. Sparkfun. 2009. Analog Devices ADXL345 Breakout Board. https://www.sparkfun.com/datasheets/Sensors/Accelerometer/ADXL345.pdf. Last accessed: Apr. 1, 2018.Google ScholarGoogle Scholar
  48. Ivan Stoianov, Lama Nachman, Sam Madden, and Timur Tokmouline. 2007. PIPENET: A Sireless Sensor Network for Pipeline Monitoring. In Proc. IPSN. ACM/IEEE, Cambridge, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Fang Su, Yongpan Liu, Yiqun Wang, and Huazhong Yang. 2017. A Ferroelectric Nonvolatile Processor with 46μs System-Level Wake-up Time and 14μs Sleep Time for Energy Harvesting Applications. IEEE Trans. Circuits Syst. I 64, 3 (March 2017).Google ScholarGoogle Scholar
  50. Texas Instruments, Inc. 2014. FRAM FAQs. http://www.ti.com/lit/ml/slat151/slat151.pdf. Last accessed: Mar. 30, 2018.Google ScholarGoogle Scholar
  51. Texas Instruments Inc. 2017. MSP430FR59xx Mixed-Signal Microcontrollers (Rev. F). http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf. Last accessed: Aug. 30, 2018.Google ScholarGoogle Scholar
  52. Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Computation Without Hardware Support or Programmer Intervention. In Proc. OSDI. ACM, Savannah, GA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. InK: Reactive Kernel for Tiny Batteryless Sensors

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SenSys '18: Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems
          November 2018
          449 pages
          ISBN:9781450359528
          DOI:10.1145/3274783

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 4 November 2018

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate174of867submissions,20%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader