skip to main content
10.1145/3282866.3282869acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

A Visual Analytics Framework for Big Spatiotemporal Data

Published: 06 November 2018 Publication History

Abstract

Spatial visual analytics 1 is a critical aspect for big spatiotemporal data (BSTD) in exhibition the hidden spatiotemporal patterns. However, the real-time and dynamic characters of BSTD causes great challenges for the GIS domain and big data domain due to the limitation of the current visual analytics tools. Thus, we propose and implement a visual analytics framework. The framework integrates open source map library and visualization library to provide innovative visual capacity for BSTD. The framework uses GIScript and iDesktop Cross to support high performance BSTD spatial analytics. The application of the framework in global air traffic data proves its efficiency and utility in discovering the global flight patterns. The framework simplifies the visual analytics procedure for BSTD and can be adopted by various domains.

References

[1]
Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S. I., ... and Tominski, C. 2010. Space, time and visual analytics. International Journal of Geographical Information Science, 24(10), 1577--1600.
[2]
OpenLayers Homepage, https://openlayers.org/, last accessed 2018/09/04.
[3]
Leaflet Homepage, https://leafletjs.com/, last accessed 2018/09/04.
[4]
Mapbox GL Homepage, https://www.mapbox.com/mapbox-gl-js/api/, last accessed 2018/09/04.
[5]
D3 Homepage, https://d3js.org/, last accessed 2018/09/04/
[6]
Echarts Homepage, http://echarts.baidu.com/, last accessed 2018/09/04.
[7]
Mapv Homepage, http://mapv.baidu.com/, last accessed 2018/09/04.
[8]
Von L. T., Brodkorb F., Roskosch P., et al. MobilityGraphs: Visual Analysis of Mass Mobility Dynamics via Spatio-Temporal Graphs and Clustering. IEEE Transactions on Visualization & Computer Graphics, 2016, 22(1):11--20.
[9]
Kim, K. S., Kim, D., Jeong, H., and Ogawa, H. 2017. Stinuum: A holistic visual analysis of moving objects with open source software. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (p. 85). ACM.
[10]
Andrienko, G., Andrienko, N., Fuchs, G., and Wood, J. 2017. Revealing patterns and trends of mass mobility through spatial and temporal abstraction of origin-destination movement data. IEEE transactions on visualization and computer graphics, 23(9), 2120--2136.
[11]
Liono, J., Salim, F. D., and Subastian, I. F. 2015, October. Visualization oriented spatiotemporal urban data management and retrieval. In Proceedings of the ACM First International Workshop on Understanding the City with Urban Informatics (pp. 21--26). ACM.
[12]
Luo, W., & MacEachren, A. M. (2014). Geo-social visual analytics. Journal of spatial information science, 2014(8), 27--66.

Cited By

View all
  • (2024)Spatial-Temporal Evolution Characteristics Analysis of Color Steel Buildings in Lanzhou CityISPRS International Journal of Geo-Information10.3390/ijgi1306017913:6(179)Online publication date: 29-May-2024
  • (2021)Applications of geospatial big data in the Internet of ThingsTransactions in GIS10.1111/tgis.1284626:1(41-71)Online publication date: 24-Sep-2021
  • (2021)Spatiotemporal data mining: a survey on challenges and open problemsArtificial Intelligence Review10.1007/s10462-021-09994-yOnline publication date: 15-Apr-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
LENS'18: Proceedings of the 2nd ACM SIGSPATIAL Workshop on Analytics for Local Events and News
November 2018
49 pages
ISBN:9781450360357
DOI:10.1145/3282866
  • Editors:
  • Amr Magdy,
  • Xun Zhou,
  • Liang Zhao,
  • Yan Huang
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 November 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Big Spatiotemporal Data (BSTD)
  2. GIScript
  3. SuperMap GIS
  4. Visual Analytics framework
  5. iDesktop Cross

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SIGSPATIAL '18
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)12
  • Downloads (Last 6 weeks)1
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Spatial-Temporal Evolution Characteristics Analysis of Color Steel Buildings in Lanzhou CityISPRS International Journal of Geo-Information10.3390/ijgi1306017913:6(179)Online publication date: 29-May-2024
  • (2021)Applications of geospatial big data in the Internet of ThingsTransactions in GIS10.1111/tgis.1284626:1(41-71)Online publication date: 24-Sep-2021
  • (2021)Spatiotemporal data mining: a survey on challenges and open problemsArtificial Intelligence Review10.1007/s10462-021-09994-yOnline publication date: 15-Apr-2021
  • (2019)A Hybrid Framework for High-Performance Modeling of Three-Dimensional Pipe NetworksISPRS International Journal of Geo-Information10.3390/ijgi81004418:10(441)Online publication date: 8-Oct-2019

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media