skip to main content
research-article

Improved Hieroglyph Representation for Image Retrieval

Authors Info & Claims
Published:30 April 2019Publication History
Skip Abstract Section

Abstract

In recent years, an interdisciplinary effort between archaeologists and computer vision experts has emerged to provide image retrieval tools that facilitate and support cultural heritage preservation. The performance of these tools largely depends on the hieroglyph representation quality. In the literature, the most successful hieroglyph representation for retrieval following the BoVW model includes a thinning hieroglyph process and selects interest points through uniform random sampling. However, thinned hieroglyphs could have noise or redundant information, and a random set of interest points could include non-useful interest points that are different in each iteration. In this article, we propose improving this hieroglyph representation by pruning thinned hieroglyphs and introducing an improved interest-point selection. Our experiments show that our proposal significantly improves the hieroglyph retrieval results of state-of-the-art methods.

References

  1. X. Bai, L. J. Latecki, and W.-y. Liu. 2007. Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. Pattern Anal. Mach. Intell. 29, 3 (March 2007), 449--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Belongie, J. Malik, and J. Puzicha. 2002. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 4 (Apr. 2002), 509--522. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Gülcan Can, Jean-Marc Odobez, and Daniel Gatica-Perez. 2017. Shape representations for Maya codical glyphs: Knowledge-driven or deep? In Proceedings of the 15th International Workshop on Content-based Multimedia Indexing (CBMI’17). ACM, Article 32, 6 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Gülcan Can, Jean-Marc Odobez, and Daniel Gatica-Perez. 2018. How to tell ancient signs apart? Recognizing and visualizing Maya glyphs with CNNs. ACM J. Comput. Cult. Her. (May 2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Vincenzo Deufemia and Luca Paolino. 2013. Combining unsupervised clustering with a non-linear deformation model for efficient petroglyph recognition. In Advances in Visual Computing, George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Baoxin Li, Fatih Porikli, Victor Zordan, James Klosowski, Sabine Coquillart, Xun Luo, Min Chen, and David Gotz (Eds.). Springer Berlin, 128--137.Google ScholarGoogle Scholar
  6. Vincenzo Deufemia and Luca Paolino. 2014. Segmentation and recognition of petroglyphs using generic Fourier descriptors. In Image and Signal Processing, Abderrahim Elmoataz, Olivier Lezoray, Fathallah Nouboud, and Driss Mammass (Eds.). Springer International Publishing, Cham, 487--494.Google ScholarGoogle Scholar
  7. V. Deufemia, L. Paolino, and H. de Lumley. 2012. Petroglyph recognition using self-organizing maps and fuzzy visual language parsing. In Proceedings of the IEEE 24th International Conference on Tools with Artificial Intelligence, Vol. 1. 852--859. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. David H. Douglas and Thomas K. Peucker. 1973. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: Int. J. Geogr. Inform. Geovis. 10, 2 (1973), 112--122.Google ScholarGoogle ScholarCross RefCross Ref
  9. Jaime Duque-Domingo, Pedro Javier Herrera, Enrique Valero, and Carlos Cerrada. 2017. Deciphering Egyptian hieroglyphs: Towards a new strategy for navigation in museums. Sensors 17, 3 (2017).Google ScholarGoogle Scholar
  10. Rafael C. Gonzalez and Richard E. Woods. 2006. Digital Image Processing (3rd ed.). Prentice-Hall, Inc., Upper Saddle River, NJ. 653--655. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Rui Hu, Carlos Pallan Gayol, Jean-Marc Odobez, and Daniel Gatica-Perez. 2017. Analyzing and visualizing ancient Maya hieroglyphics using shape: From computer vision to digital humanities. Dig. Schol. Hum. 32 (2017), 179--194.Google ScholarGoogle Scholar
  12. J. K. Lakshmi and M. Punithavalli. 2009. A survey on skeletons in digital image processing. In Proceedings of the International Conference on Digital Image Processing. 260--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Longin Jan Latecki and Rolf Lakämper. 1999. Convexity rule for shape decomposition based on discrete contour evolution. Comput. Vis. Image Und. 73 (1999), 441--454. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Longin Jan Latecki and Rolf Lakämper. 1999. Polygon evolution by vertex deletion. In Proceedings of the 2nd International Conference on Scale-Space Theories in Computer Vision (SCALE-SPACE’99). Springer-Verlag, 398--409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hongzhi Liu, Zhonghai Wu, D. Frank Hsu, Bradley S. Peterson, and Dongrong Xu. 2012. On the generation and pruning of skeletons using generalized Voronoi diagrams. Pattern Recog. Lett. 33, 16 (2012), 2113-2119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. HongZhi Liu, Zhong-Hai Wu, Xing Zhang, and D. Frank Hsu. 2013. A skeleton pruning algorithm based on information fusion. Pattern Recog. Lett. 34, 10 (2013), 1138--1145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. David G. Lowe. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 2 (2004), 91--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Krystian Mikolajczyk and Cordelia Schmid. 2004. Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60, 1 (2004), 63--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Greg Mori, Serge Belongie, and Jitendra Malik. 2005. Efficient shape matching using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 27, 11 (Nov. 2005), 1832--1837. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Thanh Phuong Nguyen and Isabelle Debled-Rennesson. 2011. A discrete geometry approach for dominant point detection. Pattern Recog. 44, 1 (2011), 32--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Laura Alejandra Pinilla-Buitrago, José Fco. Martínez-Trinidad, and J. A. Carrasco-Ochoa. 2014. A new method for skeleton pruning. In Pattern Recog., José Francisco Martínez-Trinidad, Jesús Ariel Carrasco-Ochoa, José Arturo Olvera-Lopez, Joaquín Salas-Rodríguez, and Ching Y. Suen (Eds.). Lecture Notes in Computer Science, Vol. 8495. Springer International Publishing, 301--310.Google ScholarGoogle Scholar
  22. D. K. Prasad, Chai Quek, M. K. H. Leung, and Siu-Yeung Cho. 2011. A parameter independent line fitting method. In Proceedings of the 1st Asian Conference on Pattern Recognition (ACPR’11). 441--445.Google ScholarGoogle ScholarCross RefCross Ref
  23. Edgar Roman-Rangel and Stephane Marchand-Maillet. 2014. HOOSC128: A more robust local shape descriptor. In Pattern Recog., José Francisco Martínez-Trinidad, Jesús Ariel Carrasco-Ochoa, José Arturo Olvera-Lopez, Joaquín Salas-Rodríguez, and Ching Y. Suen (Eds.). Lecture Notes in Computer Science, Vol. 8495. Springer International Publishing, 172--181.Google ScholarGoogle Scholar
  24. Edgar Roman-Rangel and Stephane Marchand-Maillet. 2015. Shape-based detection of Maya hieroglyphs using weighted bag representations. Pattern Recog. 48, 4 (2015), 1161--1173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Edgar Roman-Rangel, Carlos Pallan Gayol, Jean-Marc Odobez, and Daniel Gatica-Perez. 2011. Analyzing ancient Maya glyph collections with contextual shape descriptors. Int. J. Comput. Vis. 94, 1 (2011), 101--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Edgar Roman-Rangel, Carlos Pallan Gayol, Jean-Marc Odobez, and Daniel Gatica-Perez. 2011. Searching the past: An improved shape descriptor to retrieve Maya hieroglyphs. In Proceedings of the 19th ACM International Conference on Multimedia (MM’11). ACM, 163--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Edgar Roman-Rangel, Carlos Pallan Gayol, Jean-Marc Odobez, and Daniel Gatica-Perez. 2013. Evaluating shape descriptors for detection of Maya hieroglyphs. In Pattern Recog., Jesús Ariel Carrasco-Ochoa, José Francisco Martínez-Trinidad, Joaquín Salas Rodríguez, and Gabriella Sanniti di Baja (Eds.). Lecture Notes in Computer Science, Vol. 7914. Springer Berlin, 145--154.Google ScholarGoogle Scholar
  28. Punam K. Saha, Gunilla Borgefors, and Gabriella Sanniti di Baja. 2016. A survey on skeletonization algorithms and their applications. Pattern Recog. Lett. 76 (2016), 3--12. Special Issue on Skeletonization and Its Application. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Markus Seidl. 2016. Computation Analysis of Petroglyphs. Ph.D. Dissertation. Technische Universitat Wien, Vienna, Austria.Google ScholarGoogle Scholar
  30. Markus Seidl and Christian Breiteneder. 2011. Detection and classification of petroglyphs in gigapixel images. In Proceedings of the International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage (VAST’11)—Short and Project Papers, Franco Niccolucci, Matteo Dellepiane, Sebastian Pena Serna, Holly Rushmeier, and Luc Van Gool (Eds.). The Eurographics Association.Google ScholarGoogle Scholar
  31. Markus Seidl, Ewald Wieser, and Craig Alexander. 2015. Automated classification of petroglyphs. Dig. Appl. Arch. Cult. Her. 2, 2 (2015), 196--212.Google ScholarGoogle ScholarCross RefCross Ref
  32. Markus Seidl, Ewald Wieser, Matthias Zeppelzauer, Axel Pinz, and Christian Breiteneder. 2015. Graph-based shape similarity of petroglyphs. In Computer Vision—ECCV 2014 Workshops, Lourdes Agapito, Michael M. Bronstein, and Carsten Rother (Eds.). Springer International Publishing, Cham, 133--148.Google ScholarGoogle Scholar
  33. Luca Serino and Gabriella Sanniti di Baja. 2016. A new strategy for skeleton pruning. Pattern Recog. Lett. 76, Supplement C (2016), 41--48. Special Issue on Skeletonization and Its Application. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wei Shen, Xiang Bai, Rong Hu, Hongyuan Wang, and Longin Jan Latecki. 2011. Skeleton growing and pruning with bending potential ratio. Pattern Recog. 44, 2 (2011), 196--209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wei Shen, Xiang Bai, Xingwei Yang, and Longin Jan Latecki. 2013. Skeleton pruning as trade-off between skeleton simplicity and reconstruction error. Sci. China Inform. Sci. 56, 4 (Apr. 2013), 1--14.Google ScholarGoogle Scholar
  36. J. Eric S. Thompson. 1962. A Catalog of Maya Hieroglyphs. University of Oklahoma Press.Google ScholarGoogle Scholar
  37. Xinggang Wang, Bin Feng, Xiang Bai, Wenyu Liu, and Longin Jan Latecki. 2014. Bag of contour fragments for robust shape classification. Pattern Recog. 47, 6 (2014), 2116--2125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ewald Wieser, Markus Seidl, and Matthias Zeppelzauer. 2017. A study on skeletonization of complex petroglyph shapes. Mult. Tools Appl. 76, 6 (Mar 2017), 8285--8303. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. T. Y. Zhang and C. Y. Suen. 1984. A fast parallel algorithm for thinning digital patterns. Commun. ACM 27, 3 (March 1984), 236--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Qiang Zhu, Xiaoyue Wang, Eamonn Keogh, and Sang-Hee Lee. 2011. An efficient and effective similarity measure to enable data mining of petroglyphs. Data Mining Knowl. Discov. 23, 1 (Jul 2011), 91--127. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Improved Hieroglyph Representation for Image Retrieval

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in

                Full Access

                • Published in

                  cover image Journal on Computing and Cultural Heritage
                  Journal on Computing and Cultural Heritage   Volume 12, Issue 2
                  June 2019
                  153 pages
                  ISSN:1556-4673
                  EISSN:1556-4711
                  DOI:10.1145/3328727
                  Issue’s Table of Contents

                  Copyright © 2019 ACM

                  Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 30 April 2019
                  • Revised: 1 October 2018
                  • Accepted: 1 October 2018
                  • Received: 1 February 2018
                  Published in jocch Volume 12, Issue 2

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • research-article
                  • Research
                  • Refereed

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader

                HTML Format

                View this article in HTML Format .

                View HTML Format