skip to main content
10.1145/3285996.3286009acmotherconferencesArticle/Chapter ViewAbstractPublication PagesisicdmConference Proceedingsconference-collections
research-article

Sparse-View CT Reconstruction via Robust and Multi-channels Autoencoding Priors

Authors Info & Claims
Published:13 October 2018Publication History

ABSTRACT

Reducing low-dose radiation while maintaining high-quality image reconstruction in X-ray computed tomography (CT) is challenging, due to the reconstruction images degradation as the number of projection view decreases. As opposed to most of the existing deep network approaches with supervised learning scheme, which requires the data in the learning and testing procedure to be the same dimension, in the paper we propose an unsupervised learning approach based on the denoising autoencoding prior (DAEP) for few-view CT reconstruction. Two innovations were done to substantially improve the naive DAEP. First, by employing the virtual variables technique, higher-dimensional network is learned and then incorporated into the single-channel reconstruction procedure. Second, replacing the L2 regression loss function by more robust L1 regression is favor to preserve texture details. Experimental results demonstrate that the proposed method can achieve promising effects over state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR) and subjective visual quality.

References

  1. A. J. Einstein, M. J. Henzlova, and S, Rajagopalan. 2007. Estimating risk of cancer associated with radiation exposure from 64-slice CT coronary angiography. J. Am. Med. Assoc. 298(3), 317--323.Google ScholarGoogle ScholarCross RefCross Ref
  2. D. J. Brenner and E. J. Hall. 2007. CT-An increasing source of radiation exposure. New Eng. J. Med. 357(22), 2277--2284.Google ScholarGoogle ScholarCross RefCross Ref
  3. Y. Liu, J. Ma, Y. Fan, and Z. Liang. 2012. Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction. Phys Med Biol. 57(23), 7923--7956.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. Gordon, R. Bender, and G. T. Herman. 1970. Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography. Journal of Teoretical Biology. 29(3), 471--481.Google ScholarGoogle ScholarCross RefCross Ref
  5. A. H. Andersen and A. C. Kak. 1984. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrasonic Imaging. 6(1), 81--94.Google ScholarGoogle ScholarCross RefCross Ref
  6. E. Y. Sidky, C. M. Kao, and X. Pan. 2006. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. Journal of X-ray Science and Technology. 14(2), 119--139.Google ScholarGoogle Scholar
  7. J. Song, Q. H. Liu, G. A. Johnson, and C. T. Badea. 2007. Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT. Medical physics. 34(11), 4476--4483.Google ScholarGoogle Scholar
  8. Z. Tian, X. Jia, K. Yuan, T. Pan, and S. B. Jiang. 2011. Low-dose CT reconstruction via edge-preserving total variation regularization. Phys Med Biol. 56(18), 5949--5967.Google ScholarGoogle ScholarCross RefCross Ref
  9. Y Liu, Z Liang, J Ma, H Lu, and K Wang. 2014. Total variation-stokes strategy for sparse-view X-ray CT image reconstruction. IEEE Trans. Med. Imag. 33(3), 749--763.Google ScholarGoogle ScholarCross RefCross Ref
  10. Q. Xu, H. Yu, X. Mou, and G. Wang. 2014. Dictionary learning based low dose x-ray CT reconstruction. Frontiers of Medical Imaging. 99--119.Google ScholarGoogle Scholar
  11. Z. Hu, Q. Liu, N. Zhang, Y. Zhang, X. Peng, P. Wu, and D. Liang. 2016. Image reconstruction from few-view CT data by gradient-domain dictionary learning. Journal of X-ray science and technology. 24(4), 627--638.Google ScholarGoogle ScholarCross RefCross Ref
  12. O. Ronneberger, P. Fischer, and T. Brox. 2015. U-Net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer. 234--241.Google ScholarGoogle Scholar
  13. J. Kim, J. Kwon Lee, and K. Mu Lee. 2016. Deeply-recursive convolutional network for image super-resolution. In Proc. IEEE CVPR. 1637--1645.Google ScholarGoogle Scholar
  14. T. Wurfl, F. C. Ghesu, V. Christlein, and A. Maier. 2016. Deep learning computed tomography. In International Conference on MICCAI. Springer. 432--440.Google ScholarGoogle Scholar
  15. E. Kang, J. Min, and J. C. Ye. 2017. A deep convolutional neural network using directional wavelets for low-dose x-ray CT reconstruction. Medical Physics. 44(10), 360--375.Google ScholarGoogle ScholarCross RefCross Ref
  16. H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li, J. Zhou, and G. Wang. 2017. Low-dose CT via convolutional neural network. Biomedical optics express. 8(2), 679--694.Google ScholarGoogle Scholar
  17. H. Chen, Y. Zhang, M. K. Kalra, F. Lin, P. Liao, J. Zhou, and G. Wang. 2017. Low-dose CT with a residual encoder-decoder convolutional neural network (RED-CNN). arXiv preprint arXiv:1702.00288.Google ScholarGoogle Scholar
  18. E. Kang and J. C. Ye. 2017. Wavelet domain residual network (WavResNet) for low-dose X-ray CT reconstruction. International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (arXiv preprint arXiv:1703.01383).Google ScholarGoogle Scholar
  19. E. Kang, J. Yoo, and J. C. Ye.2017. Wavelet residual network for low-dose CT via deep convolutional framelets. ArXiv preprint arXiv:1707.09938.Google ScholarGoogle Scholar
  20. K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. 2017. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(8), 4509--4522.Google ScholarGoogle ScholarCross RefCross Ref
  21. Y. Han, J. Yoo, and J. C. Ye. 2016. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. ArXiv preprint arXiv:1611.06391.Google ScholarGoogle Scholar
  22. S.A. Bigdeli and M. Zwicker. 2017. Image restoration using autoencoding priors. ArXiv preprint arXiv: 1703.09964.Google ScholarGoogle Scholar
  23. G. Alain and Y. Bengio. 2014. What regularized auto-encoders learn from the data-generating distribution. Journal of Machine Learning Research. 15, 3743--3773. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. N. Joshi, C. L. Zitnick, R. Szeliski, D. Kriegman. 2009. Image deblurring and denoising using color priors. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 1550--1557.Google ScholarGoogle ScholarCross RefCross Ref
  25. H. S. Mousavi and V. Monga. 2017. Sparsity-based color image super resolution via exploiting cross channel constraints, IEEE Trans. Image Process. 26(11), 5094--5106.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Q. Liu, H. Leung. 2018. Variable augmented neural network for decolorization and multi-exposure fusion. Information Fusion. 46, 114--127.Google ScholarGoogle ScholarCross RefCross Ref
  27. K.N. Chaudhury, and M. Unser. 2012. Non-local Euclidean medians. IEEE Signal Processing Letters. 19(11), 745--748.Google ScholarGoogle ScholarCross RefCross Ref
  28. I. Gorodnitsky, and B. Rao. 1997. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600--616. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. B.D. Rao, and K.K-. Delgado.1999. An affine scaling methodology for best basis selection. IEEE Trans. Signal Process. 47(1), 187--200. Google ScholarGoogle ScholarCross RefCross Ref
  30. P. Rodriguez, B. Wohlberg. 2009. Efficient minimization method for a generalized total variation functional. IEEE Trans. Image Process. 18(2), 322--332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. P. Rodriguez, and B. Wohlberg. 2008. An efficient algorithm for sparse representations with lp data fidelity term. In: Proceedings of 4th IEEE Andean Technical Conference (ANDESCON).Google ScholarGoogle Scholar
  32. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F. Li. 2009. Imagenet: A large-scale hierarchical image database. IEEE Trans. Image Process. 248--255.Google ScholarGoogle Scholar
  33. J. Cong and B. Xiao. 2014. Minimizing computation in convolutional neural networks. In Proc. Int. Conf. Artif. Neural Netw. 281--290.Google ScholarGoogle Scholar
  34. Y. Han and J. Ye. June, 2018. Framing U-Net via deep convolutional framelets: Application to sparse-view CT. IEEE Trans. Medical Imag. 37(6), 1418--1429Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Sparse-View CT Reconstruction via Robust and Multi-channels Autoencoding Priors

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ISICDM 2018: Proceedings of the 2nd International Symposium on Image Computing and Digital Medicine
      October 2018
      166 pages
      ISBN:9781450365338
      DOI:10.1145/3285996

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 October 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader