skip to main content
10.1145/3290605.3300594acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Honorable Mention

Look-From Camera Control for 3D Terrain Maps

Published:02 May 2019Publication History

ABSTRACT

We introduce three lightweight interactive camera control techniques for 3D terrain maps on touch devices based on a look-from metaphor (Discrete Look-From-At, Continuous Look-From-Forwards, and Continuous Look-From-Towards). These techniques complement traditional touch screen pan, zoom, rotate, and pitch controls allowing viewers to quickly transition between top-down, oblique, and ground-level views. We present the results of a study in which we asked participants to perform elevation comparison and line-of-sight determination tasks using each technique. Our results highlight how look-from techniques can be integrated on top of current direct manipulation navigation approaches by combining several direct manipulation operations into a single look-from operation. Additionally, they show how look-from techniques help viewers complete a variety of common and challenging map-based tasks.

Skip Supplemental Material Section

Supplemental Material

pn4525.mp4

mp4

65.7 MB

References

  1. Pablo Abend, Tristan Thielmann, Ralph Ewerth, Dominik Seiler, Markus Mühling, Jörg Döring, Manfred Grauer, and Bernd Freisleben. 2012. Geobrowsing behaviour in Google Earth-A semantic video content analysis of on-screen navigation. GI_Forum (2012), 2--13.Google ScholarGoogle Scholar
  2. American Psychological Association. 2017. Publication Manual of the American Psychological Association (sixth ed.). American Psychological Association, Washington.Google ScholarGoogle Scholar
  3. Henrik Buchholz, Johannes Bohnet, and Jürgen Döllner. 2005. Smart and physically-based navigation in 3D geovirtual environments. In Ninth International Conference on Information Visualisation (IV'05). IEEE, 629--635. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Jonas Buddeberg, Bernhard Jenny, and Wesley Willett. 2017. Interactive shearing for terrain visualization: an expert study. GeoInformatica 21, 3 (jul 2017), 643--665. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Stuart K. Card, Jock D. Mackinlay, and George G. Robertson. 1991. A morphological analysis of the design space of input devices. ACM Transactions on Information Systems 9, 2 (apr 1991), 99--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. David B. Christianson, Sean E. Anderson, Li-wei He, David H. Salesin, Daniel S. Weld, and Michael F. Cohen. 1996. Declarative Camera Control for Automatic Cinematography. In Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume 1 (AAAI'96). AAAI Press, 148--155. http://dl.acm.org/citation.cfm?id=1892875.1892897 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. 2008. A review of overview+detail, zooming, and focus+context interfaces. Comput. Surveys 41, 1 (dec 2008), 1--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Geoff Cumming. 2014. The new statistics: Why and how. Psychological science 25, 1 (2014), 7--29.Google ScholarGoogle ScholarCross RefCross Ref
  9. Pierre Dragicevic, Fanny Chevalier, and Stephane Huot. 2014. Running an HCI Experiment in Multiple Parallel Universes. In CHI '14 Extended Abstracts on Human Factors in Computing Systems (CHI EA '14). ACM, New York, NY, USA, 607--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Jörg Edelmann, Andreas Schilling, and Sven Fleck. 2009. The DabR - A multitouch system for intuitive 3D scene navigation. In 2009 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video. 1--4.Google ScholarGoogle Scholar
  11. James D. Eynard and Bernhard Jenny. 2016. Illuminated and shadowed contour lines: improving algorithms and evaluating effectiveness. International Journal of Geographical Information Science (apr 2016), 1--21.Google ScholarGoogle Scholar
  12. Michael Gleicher and Andrew Witkin. 1992. Through-the-lens camera control. In ACM SIGGRAPH Computer Graphics, Vol. 26. 331--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Benjamin Hagedorn and Jürgen Döllner. 2008. Sketch-based navigation in 3D virtual environments. In Smart Graphics. Springer Berlin Heidelberg, Berlin, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Andrew J. Hanson and Eric A. Wernert. 1997. Constrained 3D navigation with 2D controllers. In Proceedings of the 8th Conference on Visualization '97 (VIS '97). IEEE Computer Society Press, Los Alamitos, CA, USA, 175--ff. http://dl.acm.org/citation.cfm?id=266989.267052 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. DieterHildebrandtandRobertTimm.2014. Anassisting,constrained3D navigationtechniqueformultiscalevirtual3Dcitymodels. GeoInformatica 18, 3 (jul 2014), 537--567. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Robert J. K. Jacob, Linda E. Sibert, Daniel C. McFarlane, and M. Preston Mullen. 1994. Integrality and separability of input devices. ACM Transactions on Computer-Human Interaction 1, 1 (mar 1994), 3--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jacek Jankowski and Martin Hachet. 2015. Advances in interaction with 3D environments. In Computer Graphics Forum, Vol. 34. 152--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Nico Li, Wesley Willett, Ehud Sharlin, and Mario Costa Sousa. 2017. Visibility perception and dynamic viewsheds for topographic maps and models. In Proceedings of the 5th Symposium on Spatial User Interaction - SUI '17. ACM Press, New York, 39--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jock Mackinlay, Stuart K. Card, and George G. Robertson. 1990. A semantic analysis of the design space of input devices. Human-Computer Interaction 5, 2 (1990), 145--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jock D. Mackinlay, Stuart K. Card, and George G. Robertson. 1990. Rapid Controlled Movement Through a Virtual 3D Workspace. In Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH Computer Graphics). ACM, New York, NY, USA, 171--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Anthony Martinet, Gery Casiez, and Laurent Grisoni. 2012. Integrality and separability of multitouch interaction techniques in 3D manipulation tasks. IEEE Transactions on Visualization and Computer Graphics 18, 3 (mar 2012), 369--380. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. James McCrae, Igor Mordatch, Michael Glueck, and Azam Khan. 2009. Multiscale 3D Navigation. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games (I3D '09). ACM, New York, NY, USA, 7--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Richard J. Phillips, Alande Lucia, and Nicholas Skelton. 1975. Some objective tests of the legibility of relief maps. The Cartographic Journal 12, 1 (jun 1975), 39--46.Google ScholarGoogle ScholarCross RefCross Ref
  24. Jeffrey S. Pierce and Randy Pausch. 2004. Navigation with place representations and visible landmarks. In IEEE Virtual Reality 2004. 173--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. L. M. Potash, J. P. Farrell, and T. S. Jeffrey. 1978. A technique for assessing map relief legibility. The Cartographic Journal 15, 1 (jun 1978), 28--35.Google ScholarGoogle ScholarCross RefCross Ref
  26. Jef Raskin. 2000. The humane interface : new directions for designing interactive systems. Addison-Wesley. 233 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jason L. Reisman, Philip L. Davidson, and Jefferson Y. Han. 2009. A screen-space formulation for 2D and 3D direct manipulation. In Proceedings of the 22nd annual ACM symposium on User interface software and technology - UIST '09. ACM Press, New York, 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Bruno Marques Ferreira da Silva, Selan Rodrigues dos Santos, and Jauvane Cavalcante de Oliveira. 2009. Using a physically-based camera to control travel in virtual environments. Symposium on Virtual and Augmented Reality (SVR).Google ScholarGoogle Scholar
  29. RussellTurner,FrancisBalaguer,EnricoGobbetti,andDanielThalmann. 1991. Physically-based interactive camera motion control using 3D input devices. In Scientific Visualization of Physical Phenomena. Springer Japan, Tokyo, 135--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Benjamin Walther-Franks, Marc Herrlich, and Rainer Malaka. 2011. A multi-touch system for 3D modelling and animation. In Smart Graphics. SG 2011, Lecture Notes in Computer Science, vol 6815, Dickmann L. et al. (Ed.). Springer, Berlin, Heidelberg, Berlin, Heidelberg, 48--59. CHI 2019, May 4--9, 2019, Glasgow, Scotland UK K. Danyluk et al. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ming Wan, Frank Dachille, and Arie Kaufman. 2001. Distance-field based skeletons for virtual navigation. In Proceedings of the Conference on Visualization '01 (VIS '01). IEEE Computer Society, Washington, DC, USA, 239--246. http://dl.acm.org/citation.cfm?id=601671.601708 Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Colin Ware and Steven Osborne. 1990. Exploration and virtual camera control in virtual three dimensional environments. ACM SIGGRAPH Computer Graphics 24, 2 (feb 1990), 175--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wesley Willett, Bernhard Jenny, Tobias Isenberg, and Pierre Dragicevic. 2015. Lightweight relief shearing for enhanced terrain perception on interactive maps. In Proceedings of the SIGCHI conference on Human factors in computing systems. ACM Press, New York, 3563--3572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Dongbo Xiao and Roger Hubbold. 1998. Navigation guided by artificial force fields. In Proceedings of the SIGCHI conference on Human factors in computing systems. ACM Press, New York, 179--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Robert Xiao, Julia Schwarz, and Chris Harrison. 2015. Estimating 3D Finger Angle on Commodity Touchscreens. In Proceedings of the 2015 International Conference on Interactive Tabletops & Surfaces (ITS '15). ACM, New York, NY, USA, 47--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Georgios N. Yannakakis, Héctor P. Martínez, and Arnav Jhala. 2010. Towards affective camera control in games. User Modeling and User-Adapted Interaction 20, 4 (oct 2010), 313--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Robert Zeleznik and Andrew Forsberg. 1999. UniCam-2D gestural camera controls for 3D environments. In Proceedings of the 1999 symposium on Interactive 3D graphics - SI3D '99. ACM Press, New York, 169--173. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Look-From Camera Control for 3D Terrain Maps

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '19: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
      May 2019
      9077 pages
      ISBN:9781450359702
      DOI:10.1145/3290605

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 2 May 2019

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '19 Paper Acceptance Rate703of2,958submissions,24%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format