skip to main content
10.1145/3291940.3291984acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
short-paper

Relay-assisted optical wireless communications in turbid water

Published:03 December 2018Publication History

ABSTRACT

Underwater optical wireless communication (UOWC) systems are subject to severe performance degradation due to undissolved particles that make the water turbid. The point source diffusion of a substance in water creates a Gaussian-distributed attenuation spread for a given time instance, which makes communication challenging. To overcome this issue, we propose a dual-hop UOWC system in which the transmitter-receiver link is assisted by several amplify-and-forward relay nodes. To characterize the performance gains of this relay system, we study the bit error rate assuming on-off keying modulation. We investigate the impact of key system and particle distribution parameters such as the transmit power, the number of relays, and the spatial position of the attenuation spread on the performance.

References

  1. A. Al-Kinani, C. Wang, L. Zhou, and W. Zhang. 2018. Optical wireless communication channel measurements and models. IEEE Commun. Surveys Tuts. 20, 3 (2018), 1939--1962.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Chitre, S. Shahabudeen, and M. Stojanovic. 2008. Underwater acoustic communications and networking: Recent advances and future challenges. 42 (March 2008), 103--116.Google ScholarGoogle Scholar
  3. A. K. Das, A. Ghosh, A. M. Vibin, and S. Prince. 2012. Underwater communication system for deep sea divers using visible light. In Proc. Photonics Global Conference (PGC). Singapore, 1--3.Google ScholarGoogle Scholar
  4. C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud. 2013. Monte-Carlo-based channel characterization for underwater optical communication systems. IEEE J. Opt. Commun. Netw. 5, 1 (Jan. 2013), 1--12.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. V. Jamali, F. Akhoundi, and J. A. Salehi. 2016. Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel. IEEE Trans. Wireless Commun. 15 (Jun. 2016), 4104--4116.Google ScholarGoogle ScholarCross RefCross Ref
  6. M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi. 2018. Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations. IEEE Trans. Commun. 66 (Oct. 2018), 4706--4723.Google ScholarGoogle ScholarCross RefCross Ref
  7. H. Kaushal and G. Kaddoum. 2016. Underwater optical wireless communication. IEEE Access 4 (2016), 1518--1547.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Khalighi, T. Hamza, S. Bourennane, P. Léon, and J. Opderbecke. 2017. Underwater wireless optical communications using silicon photo-multipliers. IEEE Photon. J. 9, 4 (Aug. 2017), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  9. R. Leathers, T. Downes, C. O. Davis, and C. Mobley. 2004. Monte Carlo radiative transfer simulations for ocean optics: A practical guide. Naval Research Lab Washington DC Applied Optics Branch (2004).Google ScholarGoogle Scholar
  10. Y. Luo, L. Pu, M. Zuba, Z. Peng, and J. Cui. 2014. Challenges and opportunities of underwater cognitive acoustic networks. IEEE Trans. Emerg. Topics Comput. 2, 2 (June 2014), 198--211.Google ScholarGoogle ScholarCross RefCross Ref
  11. C. D. Mobley, L. K. Sundman, and E. Boss. 2002. Phase function effects on oceanic light fields. Appl. Opt. 41, 6 (Feb. 2002), 1035--1050.Google ScholarGoogle ScholarCross RefCross Ref
  12. T. J. Petzold. 1972. Volume scattering functions for selected ocean waters. (Oct. 1972).Google ScholarGoogle Scholar
  13. P. Pešek, S. Zvanovec, P Chvojka, M R. Bhatnagar, Z. Ghassemlooy, and Saxena. 2018. Mobile user connectivity in relay-assisted visible light communications. Sensors 18, 4 (Apr. 2018).Google ScholarGoogle ScholarCross RefCross Ref
  14. Y. Qiu, H. Chen, and W. Meng. 2016. Channel modeling for visible light communications: A survey. Wirel. Commun. Mob. Comput. 16, 14 (Oct. 2016), 2016--2034. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. I. C. Rust and H. H. Asada. 2012. A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection. In Proc. IEEE Intl. Conf. Robotics and Automation (ICRA). Saint Paul, MN, 2445--2450.Google ScholarGoogle Scholar
  16. S. K. Sahu and P. Shanmugam. 2017. A study on the effect of scattering properties of marine particles on underwater optical wireless communication channel characteristics. In Proc. OCEANS. Aberdeen, UK, 1--7.Google ScholarGoogle Scholar
  17. S. Tang, Y. Dong, and X. Zhang. 2014. Impulse response modeling for underwater wireless optical communication links. IEEE Trans. Commun. 62, 1 (Jan. 2014), 226--234.Google ScholarGoogle ScholarCross RefCross Ref
  18. I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. 2005. Data collection, storage, and retrieval with an underwater sensor network. In Proc. 3rd Intl. Conf. Embedded Networked Sensor Systems (SenSys). San Diego, CA, 154--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. C. Wang, H. Yu, and Y. Zhu. 2016. A long distance underwater visible light communication system with single photon avalanche diode. IEEE Photon. J. 8, 5 (Oct. 2016), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  20. E. Zedini, H. M. Oubei, A. Kammoun, M. Hamdi, B. S. Ooi, and M. Alouini. 2017. A new simple model for underwater wireless optical channels in the presence of air bubbles. In Proc. IEEE Global Communications Conf. (GLOBECOM). Singapore, 1--6.Google ScholarGoogle Scholar
  21. Z. Zeng, H. Zhang, Y. Dong, and J. Cheng. 2016. A survey of underwater wireless optical communication. 19 (Oct. 2016), 204--238.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    WUWNet '18: Proceedings of the 13th International Conference on Underwater Networks & Systems
    December 2018
    261 pages
    ISBN:9781450361934
    DOI:10.1145/3291940

    Copyright © 2018 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 3 December 2018

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • short-paper

    Acceptance Rates

    WUWNet '18 Paper Acceptance Rate11of23submissions,48%Overall Acceptance Rate84of180submissions,47%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader