skip to main content
10.1145/3293353.3293413acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicvgipConference Proceedingsconference-collections
research-article

Evaluation of Point Cloud Categorization for Rigid and Non-Rigid 3D Objects

Authors Info & Claims
Published:03 May 2020Publication History

ABSTRACT

In this paper, we address the problem of 3D object categorization for point cloud data. With the availability of inexpensive scanning devices and powerful computational resources, there is a rapid growth of point cloud data. This necessitates efficient classification techniques which form the basis for analysis and processing of 3D point cloud data. In order to address the classification problem, we propose a 3D object categorization framework for both rigid and non-rigid objects. Initially, the proposed approach extracts the feature descriptors using improved wave kernel signature by approximating Laplace-Beltrami operator on point cloud data for non-rigid objects. For rigid objects, our approach uses the geometric features, namely, metric tensor and Christoffel symbols by modifying the geodesic distance computation. These feature descriptors are then represented using bag-of-features and improved Fisher vector encoding techniques. Finally, the support vector machine classifies the 3D objects into predefined set of classes. We also provide an exhaustive performance evaluation of the proposed 3D object categorization framework on state-of-the-art datasets, namely, SHREC'10, SHREC'11, SHREC'12, SHREC'15 and Princeton Shape Benchmark. The evaluation results reveal that the proposed approach outperforms the existing object categorization methods for both rigid and non-rigid 3D objects.

References

  1. M. Aubry, U. Schlickewei, and D. Cremers. 2011. The wave kernel signature: A quantum mechanical approach to shape analysis. In ICCV. 1626--1633.Google ScholarGoogle Scholar
  2. Mikhail Belkin, Jian Sun, and Yusu Wang. 2009. Constructing Laplace Operator from Point Clouds in Rd (SODA). 1031--1040.Google ScholarGoogle Scholar
  3. Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fischer. 2017. 3D Point Cloud Classification and Segmentation using 3D Modified Fisher Vector Representation for Convolutional Neural Networks. CoRR (2017).Google ScholarGoogle Scholar
  4. Alexander M. Bronstein, Michael M. Bronstein, Alfred M. Bruckstein, and Ron Kimmel. 2009. Partial Similarity of Objects, or How to Compare a Centaur to a Horse. Int. J. Comput. Vision 84 (2009), 163--183.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. M. Bronstein and I. Kokkinos. 2010. Scale-invariant heat kernel signatures for non-rigid shape recognition. In CVPR. 1704--1711.Google ScholarGoogle Scholar
  6. S. Bu, Z. Liu, J. Han, J. Wu, and R. Ji. 2014. Learning High-Level Feature by Deep Belief Networks for 3-D Model Retrieval and Recognition. IEEE Transactions on Multimedia 16 (2014), 2154--2167.Google ScholarGoogle ScholarCross RefCross Ref
  7. Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. CoRR (2015).Google ScholarGoogle Scholar
  8. Chih Chung Chang and Chih Jen Lin. 2011. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. (2011), 27:1--27:27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ken Chatfield, Victor S. Lempitsky, Andrea Vedaldi, and Andrew Zisserman. 2011. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, Vol. 2. 76.1--76.12.Google ScholarGoogle Scholar
  10. Gabriela Csurka and Florent Perronnin. 2011. Fisher Vectors: Beyond Bag-of-Visual-Words Image Representations. In Computer Vision, Imaging and Computer Graphics. Theory and Applications. 28--42.Google ScholarGoogle Scholar
  11. T. Deselaers, L. Pimenidis, and H. Ney. 2008. Bag-of-visual-words models for adult image classification and filtering. In ICPR. 1--4.Google ScholarGoogle Scholar
  12. Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow, and Jitendra Malik. 2004. Recognizing Objects in Range Data Using Regional Point Descriptors. In ECCV. 224--237.Google ScholarGoogle Scholar
  13. Syed Altaf Ganihar, Shreyas Joshi, Shankar Setty, and Uma Mudenagudi. 2014. 3D Object Super Resolution Using Metric Tensor and Christoffel Symbols (ICVGIP). 87:1--87:8.Google ScholarGoogle Scholar
  14. Syed Altaf Ganihar, Shreyas Joshi, Shankar Setty, and Uma Mudenagudi. 2014. Metric tensor and Christoffel symbols based 3D object categorization. In Computer Vision-ACCV Workshops. Springer, 138--151.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan. 2014. 3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey. TPAMI 36 (2014), 2270--2287.Google ScholarGoogle ScholarCross RefCross Ref
  16. Y. Guo, F. A. Sohel, M. Bennamoun, J. Wan, and M. Lu. 2013. RoPS: A local feature descriptor for 3D rigid objects based on rotational projection statistics. In ICCSPA. 1--6.Google ScholarGoogle Scholar
  17. Jungong Han, Ling Shao, Dong Xu, and Jamie Shotton. 2013. Enhanced Computer Vision with Microsoft Kinect Sensor: A Review. IEEE Trans. Cybernetics 43 (2013).Google ScholarGoogle Scholar
  18. M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. 1998. Support vector machines. IEEE Intelligent Systems and their Applications 13 (1998), 18--28.Google ScholarGoogle Scholar
  19. Chih-Wei Hsu and Chih-Jen Lin. 2002. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13 (2002), 415--425.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Andrew Johnson and Martial Hebert. 1999. Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes. 21 (1999), 433--449.Google ScholarGoogle Scholar
  21. T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. 2002. An efficient k-means clustering algorithm: analysis and implementation. TPAMI 24 (2002), 881--892.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Oliver Kreylos, Gerald W.Bawden, and Louise H. Kellogg. 2008. Immersive Visualization and Analysis of LiDAR Data (ISVC).Google ScholarGoogle Scholar
  23. B. Li, A. Godil, M. Aono, X. Bai, T. Furuya, L. Li, R. López-Sastre, H. Johan, R. Ohbuchi, C. Redondo-Cabrera, A. Tatsuma, T. Yanagimachi, and S. Zhang. SHREC'12 Track: Generic 3D Shape Retrieval (EG 3DOR). 119--126.Google ScholarGoogle Scholar
  24. Xinju Li and Igor Guskov. 2005. Multi-scale Features for Approximate Alignment of Point-based Surfaces. In Proceedings of the Third Eurographics Symposium on Geometry Processing (SGP).Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoué, H. V. Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets, P. Suetens, H. Tabia, and D. Vandermeulen. 2011. SHREC'11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes (3DOR). 79--88.Google ScholarGoogle Scholar
  26. Z. Lian, A. Godil, T. Fabry, T. Furuya, J. Hermans, R. Ohbuchi, C. Shu, D. Smeets, P. Suetens, D. Vandermeulen, and S. Wuhrer. 2010. SHREC'10 Track: Non-rigid 3D Shape Retrieval. In Eurographics Workshop on 3D Object Retrieval. The Eurographics Association.Google ScholarGoogle Scholar
  27. Z. Lian, J. Zhang, S. Choi, H. ElNaghy, J. El-Sana, T. Furuya, A. Giachetti, R. A. Guler, L. Lai, C. Li, H. Li, F. A. Limberger, R. Martin, R. U. Nakanishi, A. P. Neto, L. G. Nonato, R. Ohbuchi, K. Pevzner, D. Pickup, P. Rosin, A. Sharf, L. Sun, X. Sun, S. Tari, G. Unal, and R. C. Wilson. 2015. SHREC'15 Track: Non-rigid 3D Shape Retrieval. In Eurographics Workshop on 3D Object Retrieval. The Eurographics Association.Google ScholarGoogle Scholar
  28. Frederico A. Limberger and Richard C. Wilson. 2015. Feature Encoding of Spectral Signatures for 3D Non-Rigid Shape Retrieval. In Proceedings of the BMVC. 56.1--56.13.Google ScholarGoogle Scholar
  29. R. J. López-Sastre, A. García-Fuertes, C. Redondo-Cabrera, F.J. Acevedo-Rodríguez, and S. Maldonado-Bascón. 2013. Evaluating 3D Spatial Pyramids for Classifying 3D Shapes. Comput. Graph. 37 (2013), 473--483.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lorenzo Luciano and A. Ben Hamza. 2018. Deep Learning with Geodesic Moments for 3D Shape Classification. Pattern Recogn. Lett. 105 (2018), 182--190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. Maturana and S. Scherer. 2015. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. In IROS.Google ScholarGoogle Scholar
  32. G. McLachlan and D. Peel.2000. Finite mixture models. Wiley Series in Probability and Statistics.Google ScholarGoogle ScholarCross RefCross Ref
  33. F. Perronnin and C. Dance. 2007. Fisher Kernels on Visual Vocabularies for Image Categorization. In CVPR. 1--8.Google ScholarGoogle Scholar
  34. Florent Perronnin, Jorge Sánchez, and Thomas Mensink. 2010. Improving the Fisher Kernel for Large-scale Image Classification (ECCV). Springer-Verlag, 143--156.Google ScholarGoogle Scholar
  35. Douglas A. Reynolds. 2009. Gaussian Mixture Models. In Encyclopedia of Biometrics.Google ScholarGoogle Scholar
  36. E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. 2011. ORB: An efficient alternative to SIFT or SURF. In ICCV. 2564--2571.Google ScholarGoogle Scholar
  37. Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. 2009. Fast Point Feature Histograms (FPFH) for 3D Registration (ICRA). 1848--1853.Google ScholarGoogle Scholar
  38. Michalis A. Savelonas, Ioannis Pratikakis, and Konstantinos Sfikas. 2016. Fisher Encoding of Differential Fast Point Feature Histograms for Partial 3D Object Retrieval. Pattern Recogn. 55 (2016), 114--124.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Paul Scovanner, Saad Ali, and Mubarak Shah. 2007. A 3-dimensional Sift Descriptor and Its Application to Action Recognition. ACM, 357--360.Google ScholarGoogle Scholar
  40. P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. 2004. The Princeton Shape Benchmark. In Proceedings Shape Modeling Applications. 167--178.Google ScholarGoogle Scholar
  41. Bastian Steder, Radu Bogdan Rusu, Kurt Konolige, and Wolfram Burgard. 2010. NARF: 3D Range Image Features for Object Recognition. In Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics at the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).Google ScholarGoogle Scholar
  42. Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-view Convolutional Neural Networks for 3D Shape Recognition (ICCV). 945--953.Google ScholarGoogle Scholar
  43. Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. 2009. A Concise and Provably Informative Multi-scale Signature Based on Heat Diffusion (SGP). Eurographics Association, 1383--1392.Google ScholarGoogle Scholar
  44. Roberto Toldo, Umberto Castellani, and Andrea Fusiello. 2009. A Bag of Words Approach for 3D Object Categorization. In MIRAGE.Google ScholarGoogle Scholar
  45. A. Vedaldi and B. Fulkerson. 2008. VLFeat: An Open and Portable Library of Computer Vision Algorithms. http://www.vlfeat.org/. (2008).Google ScholarGoogle Scholar
  46. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for image classification. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 3360--3367.Google ScholarGoogle Scholar
  47. Xi Zhou, Kai Yu, Tong Zhang, and Thomas S. Huang. 2010. Image Classification Using Super-vector Coding of Local Image Descriptors (ECCV). 141--154.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Evaluation of Point Cloud Categorization for Rigid and Non-Rigid 3D Objects

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          ICVGIP '18: Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing
          December 2018
          659 pages
          ISBN:9781450366151
          DOI:10.1145/3293353

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 3 May 2020

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate95of286submissions,33%
        • Article Metrics

          • Downloads (Last 12 months)7
          • Downloads (Last 6 weeks)2

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader