skip to main content
10.1145/3297067.3297088acmotherconferencesArticle/Chapter ViewAbstractPublication PagesspmlConference Proceedingsconference-collections
research-article

Deep Activation Feature Maps for Visual Object Tracking

Published: 28 November 2018 Publication History

Abstract

Video object tracking is an important task with a broad range of applications. In this paper, we propose a novel visual tracking algorithm based on deep activation feature maps in correlation filter framework. Deep activation feature maps are generated from convolution neural network feature maps, which can discover the important part of the tracking target and overcome shape deformation and heavy occlusion. In addition, the scale variation is calculated by another correlation filter with histogram of oriented gradient (HoG) features. Moreover, we integrate the final tracking result in each frame based on the appearance model and scale model to further boost the overall tracking performance. We validate the effectiveness of our approach on a challenging benchmark, where the proposed method illustrates outstanding performance compared with the state-ofthe-art tracking algorithms

References

[1]
A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun, "3D traffic scene understanding from movable platforms," IEEE Trans. Pattern Anal. Mach. Intell., vol.36, no.5, pp. 1012--1025, 2014.
[2]
Y. Wu, J. Lim, and M.-H. Yang, "Online object tracking: A benchmark," Proc. IEEE CVPR, Portland, Oregon, USA, pp. 2411--2418, Jun. 2013.
[3]
Y. Wu, J. Lim, and M.-H. Yang, "Object tracking benchmark," IEEE Trans. Pattern Anal. Mach. Intell., vol.37, no.9, pp. 1834--1848, 2015.
[4]
J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, "High-speed tracking with kernelized correlation filters," IEEE Trans. Pattern Anal. Mach. Intell., vol.37, no.3, pp.583--596, Mar. 2015.
[5]
D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, "Visual object tracking using adaptive correlation filters," Proc. IEEE CVPR, San Francisco, California, USA, pp.2544--2550, Jun. 2010.
[6]
N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," Proc. IEEE CVPR, San Diego, California, USA, pp. 886--893, Jun. 2005.
[7]
M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. van de Weijer, "Adaptive color attributes for real-time visual tracking," Proc. IEEE CVPR, Columbus, Ohio, USA, pp. 1090--1097, Jun. 2014.
[8]
Y. Li and J. Zhu, "A scale adaptive kernel correlation filter tracker with feature integration," Proc. ECCV, Zurich, Switzerland, pp. 254--265, Sept. 2014.
[9]
L. Wang, W. Ouyang, X. Wang, and H. Lu, "Visual tracking with fully convolutional networks," Proc. IEEE ICCV, Santiago, Chile, pp. 3119--3127, Dec. 2015.
[10]
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol.521, no.7553, pp. 436--444, May. 2015.
[11]
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proc. IEEE CVPR, Las Vegas, Nevada, USA, pp. 770--778, Jun. 2016.
[12]
J. Redmon, S.Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," Proc. IEEE CVPR, Las Vegas, Nevada, USA, pp. 779--788, Jun. 2016.
[13]
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," Proc. IEEE CVPR, Boston, MA, USA, pp. 3431--3440, Jun. 2015.
[14]
C. Ma, J. Huang, X. Yang, and M.-H. Yang, "Hierarchical convolutional features for visual tracking," Proc. IEEE ICCV, Santiago, Chile, pp. 3074--3082, Dec. 2015.
[15]
M. Danelljan, G. Hager, F. Khan, and M. Felsberg, "Convolutional features for correlation filter based visual tracking," Proc. IEEE ICCV Workshop, Santiago, Chile, pp. 58--66, Dec. 2015.
[16]
M. Danelljan, G. Hager, F. Khan, and M. Felsberg, "Accurate scale estimation for robust visual tracking," Proc. BMVC, Nottingham, England, pp. 1--11, Sept. 2014.
[17]
Y. Xu, J. Wang, H. Li, Y. Li, Z. Miao, and Y. Zhang, "Patch-based scale calculation for real-time visual tracking," IEEE Signal Processing Letters, vol. 23, no. 1, pp. 40--44, Jan. 2016.
[18]
M. Oquab, L. Bottou, I. Laptev, and J. Sivic, "Is object localization for free? weakly-supervised learning with convolutional neural networks," Proc. IEEE CVPR, Boston, MA, USA, pp. 685--694, Jun. 2015.
[19]
G. Li and Y. Yu, "Deep contrast learning for salient object detection," Proc. IEEE CVPR, LasVegas, Nevada, USA, pp. 478--487, Jun. 2016.
[20]
K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," Proc. ICLR, pp. 1--13, Apr. 2015.
[21]
J. Yang, D. Zhang, A. F. Frangi and J. Y. Yang, "Two-dimensional PCA: A new approach to appearance-based face representation and recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 1, pp. 131--137, 2004.
[22]
C. Ma, X. Yang, C. Zhang, and M.-H. Yang, "Long-term correlation tracking," Proc. IEEE CVPR, Boston, MA, USA, pp. 5388--5396, Jun. 2015.
[23]
J. Henriques, R. Caseiro, P. Martins, and J. Batista, "Exploiting the circulant structure of tracking-by-detection with kernels," Proc. ECCV, Frienze, Italy, pp. 702--715, Oct. 2012.
[24]
Y. Li, Y. Zhang, Y. Xu, J. Wang and Z. Miao, "Robust scale adaptive kernel correlation filter tracker with hierarchical convolutional features," IEEE Signal Processing Letters, vol. 23, no. 8, pp. 1136--1140, Aug. 2016.
[25]
A. Vedaldi and K. Lenc, "MatConvNet: Convolutional neural networks for MATLAB," Proc. 23th Int. Conf. Multimed., pp.689--692, Oct. 2015.
[26]
S. Hare, A. Saffari, and P. H. S. Torr, "Struck: Structured output tracking with kernels," Proc. IEEE ICCV, Barcelona, Spain, pp. 263--270, Nov. 2011.
[27]
M. Danelljan, H. Gustav, F. Khan, and M. Felsberg, "Learning spatially regularized correlation filters for visual tracking," Proc. IEEE ICCV, Santiago, Chile, pp. 4310--4318, Dec. 2015.
[28]
J. Gao, H. Ling, W. Hu, and J. Xing, "Transfer learning based visual tracking with Gaussian processes regression," Proc. ECCV, Zurich, Switzerland, pp. 188--203, Sept. 2014.
[29]
Y. Li, J. Zhu, and S. C. H. Hoi, "Reliable patch trackers: Robust visual tracking by exploiting reliable patches," Proc. IEEE CVPR, Boston, MA, USA, pp. 353--361, Jun. 2015.
[30]
D. Wang and H. Lu, "Visual tracking via probability continuous outlier model," Proc. IEEE CVPR, Columbus, Ohio, USA, pp. 3478--3485, Jun. 2014.

Index Terms

  1. Deep Activation Feature Maps for Visual Object Tracking

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    SPML '18: Proceedings of the 2018 International Conference on Signal Processing and Machine Learning
    November 2018
    177 pages
    ISBN:9781450366052
    DOI:10.1145/3297067
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 November 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. activation feature maps
    2. convolutional neural networks
    3. correlation filter
    4. visual tracking

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    SPML '18

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 68
      Total Downloads
    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media