skip to main content
10.1145/3298689.3346953acmotherconferencesArticle/Chapter ViewAbstractPublication PagesrecsysConference Proceedingsconference-collections
tutorial

SMORe: modularize graph embedding for recommendation

Published:10 September 2019Publication History

ABSTRACT

In the Age of Big Data, graph embedding has received increasing attention for its ability to accommodate the explosion in data volume and diversity, which challenge the foundation of modern recommender systems. Respectively, graph facilitates fusing complex systems of interactions into a unified structure and distributed embedding enables efficient retrieval of entities, as in the case of approximate nearest neighbor (ANN) search. When combined, graph embedding captures relational information beyond entity interaction and towards a problem's underlying structure, as epitomized by struct2vec [20] and PinSage [26]. This session will start by brushing up on the basics about graphs and embedding methods and discussing their merits. We then quickly dive into using the mathematical formulation of graph embedding to derive the modular framework: Sampler-Mapper-Optimizer for Recommendation, or SMORe. We demonstrate existing models used for recommendation, such as MF and BPR, can all be assembled using three basic components: sampler, mapper, and optimizer. The tutorial is accompanied by a hands-on session, where we show how graph embedding can model complex systems through the multi-task learning and the cross-platform data sparsity alleviation tasks.

References

  1. O. Barkan and N. Koenigstein. {n.d.}. Item2vec: neural item embedding for collaborative filtering (MLSP 2016).Google ScholarGoogle Scholar
  2. Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. {n.d.}. Learning to rank: from pairwise approach to listwise approach (ICML 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C.-Y. Chao, Y.-F. Chu, H.-W. Yang, C.-J. Wang, and M.-F. Tsai. {n.d.}. Text Embedding for Sub-Entity Ranking from User Reviews (CIKM 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C.-M. Chen, P.-C. Chien, Y.-C. Lin, M.-F. Tsai, and Y.-H. Yang. {n.d.}. Exploiting Latent Social Listening Representations for Music Recommendations (RecSys 2015).Google ScholarGoogle Scholar
  5. C.-M. Chen, M.-F. Tsai, Y.-C. Lin, and Y.-H. Yang. {n.d.}. Query-based Music Recommendations via Preference Embedding (RecSys 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C.-M. Chen, C.-J. Wang, M.-F. Tsai, and Y.-H. Yang. {n.d.}. Collaborative Similarity Embedding for Recommender Systems (WWW 2019). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C.-M. Chen, C.-Y. Yang, C.-C. Hsia, Y. Chen, and M.-F. Tsai. {n.d.}. Music Playlist Recommendation via Preference Embedding (RecSys 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. C.-M. Chen, Y.-H. Yang, Y. Chen, and M.-F. Tsai. arXiv 2017. Vertex-Context Sampling for Weighted Network Embedding.Google ScholarGoogle Scholar
  9. Y. Dong, N. V. Chawla, and A. Swami. {n.d.}. metapath2vec: Scalable representation learning for heterogeneous networks (SIGKDD 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. R. He, W.-C. Kang, and J. McAuley. {n.d.}. Translation-based Recommendation (RecSys 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C.-C. Hsia, K.-H. Lai, Y. Chen, C.-J. Wang, and M.-F. Tsai. {n.d.}. Representation Learning for Image-based Music Recommendation (LBRS of RecSys 2018).Google ScholarGoogle Scholar
  12. Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix Factorization Techniques for Recommender Systems. Computer (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. K.-H. Lai, C.-M. Chen, M.-F. Tsai, and C.-J. Wang. {n.d.}. NavWalker: Information Augmented Network Embedding (WI 2018).Google ScholarGoogle Scholar
  14. K.-H. Lai, T.-H. Wang, H.-Y. Chi, Y. Chen, M.-F. Tsai, and C.-J. Wang. {n.d.}. Superhighway: Bypass Data Sparsity in Cross-Domain CF (LBRS of RecSys 2018).Google ScholarGoogle Scholar
  15. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. {n.d.}. Distributed representations of words and phrases and their compositionality (NIPS 2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. X. Ning and G. Karypis. {n.d.}. Slim: Sparse linear methods for top-n recommender systems (ICDM 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. B. Perozzi, R. Al-Rfou, and S. Skiena. {n.d.}. DeepWalk: Online Learning of Social Representations (SIGKDD 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. Qin, X.-D. Zhang, M.-F. Tsai, D-S. Wang, T.-Y. Liu, and H. Li. 2008. Query-level loss functions for information retrieval. Information Processing & Management (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. B. Recht, C. Re, S. Wright, and F. Niu. {n.d.}. Hogwild: A lock-free approach to parallelizing stochastic gradient descent (NIPS 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo. {n.d.}. struc2vec: Learning node representations from structural identity (SIGKDD 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. {n.d.}. LINE: Large-scale information network embedding (WWW 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma. {n.d.}. FRank: a ranking method with fidelity loss (SIGIR 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C.-H. Wang, K.-C. Fan, C.-J. Wang, and M.-F. Tsai. {n.d.}. UGSD: User Generated Sentiment Dictionaries from Online Customer Reviews (AAAI 2019).Google ScholarGoogle Scholar
  24. C.-J. Wang, T.-H. Wang, H.-W. Yang, B.-S. Chang, and M.-F. Tsai. {n.d.}. ICE: Item concept embedding via textual information (SIGIR 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J.-H. Yang, C.-M. Chen, C.-J. Wang, and M.-F. Tsai. {n.d.}. HOP-rec: High-order Proximity for Implicit Recommendation (RecSys 2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. {n.d.}. Graph convolutional neural networks for web-scale recommender systems (SIGKDD 2018). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. SMORe: modularize graph embedding for recommendation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        RecSys '19: Proceedings of the 13th ACM Conference on Recommender Systems
        September 2019
        635 pages
        ISBN:9781450362436
        DOI:10.1145/3298689

        Copyright © 2019 Owner/Author

        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 10 September 2019

        Check for updates

        Author Tags

        Qualifiers

        • tutorial

        Acceptance Rates

        RecSys '19 Paper Acceptance Rate36of189submissions,19%Overall Acceptance Rate254of1,295submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader