skip to main content
10.1145/3299815.3314425acmconferencesArticle/Chapter ViewAbstractPublication Pagesacm-seConference Proceedingsconference-collections
research-article

Idiopathic Interstitial Pneumonias Medical Image Detection Using Deep Learning Techniques: A Survey

Published: 18 April 2019 Publication History

Abstract

Idiopathic Interstitial Pneumonias (IIP) causes pulmonary fibrosis. How to detect lung nodule from Computerized Tomography (CT) images plays a crucial role in the diagnosis and treatment process. In this paper, we review the CT images recognition algorithm with deep learning methods for the detection of lung nodule patterns. We will compare convolutional neural networks (CNNs) performance for lung nodule image recognition and introduce deep learning methods, including utilization Fast-RCNN and Faster-RCNN, residual learning neural network (ResNet), transfer learning etc.

References

[1]
G. E. Hinton, A. Krizhevsky, and I. Sutskever. 2017. ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, {s. l.}, vol. 60, no. 6, pp. 84--90, 2017.
[2]
X. Cao, Y. Hou, J. Lei, N. Ling, H. Zhang, K. Zheng, et al. 2017. Sketch Based Image Retrieval via Image-Aided Cross-Domain Learning. 2017 IEEE International Conference on Image Processing (ICIP), Image Processing (ICIP), 2017 IEEE International Conference on, p. 3685.
[3]
B. Abdollahi, G.M. Beache, A. El-Baz, A. Elnakib, G. Gimel'farb, A. Soliman, et al. 2013. Computer-Aided Diagnosis Systems for Lung Cancer: Challenges and Methodologies. International Journal of Biomedical Imaging, {s. l.}, pp. 1--46, 2013
[4]
L. Bottou, Y. Bengio, P. Haffner, and Y. Lecun. 1998. Gradient-Based Learning Applied to Document Recognition. in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278--2324, November 1998.
[5]
A. Canziani, E. Culurciello, and A. Paszke. 2016. An Analysis of Deep Neural Network Models for Practical Applications. 2016.
[6]
R. Anirudh, T. Bremer, H. Kim, and J. J. Thiagarajan. 2016. Lung Nodule Detection Using 3D Convolutional Neural Networks Trained on Weakly Labeled Data. In Proceedings of SPIE 9785, Medical Imaging 2016: Computer-Aided Diagnosis, 978532, March 2016.
[7]
J. Kim, H. Lee, H.S. Lee, and M. Park. 2017. Contextual Convolutional Neural Networks for Lung Nodule Classification Using Gaussian-Weighted Average Image Patches. In Proceedings of SPIE 10134, Medical Imaging 2017: Computer-Aided Diagnosis, 1013423, March 2017.
[8]
K. Cherry, J. Liu, L. Lu, H. R. Roth, A. Seff, J. Yao, et al. 2016. Improving Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation. in IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1170--1181, May 2016.
[9]
F. Ciompi, P. Gerke, G. Litjens, C. Jacobs, S. J. van Riel, A.A.A. Setio, et al. 2016. Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks. in IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1160--1169, May 2016.
[10]
R. Girshick. 2015. Fast R CNN. IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2015, pp. 1440 1448.
[11]
K. He, R. Girshick, S. Ren, and J. Sun 2017. Faster R-CNN: Towards Real Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6), pp. 1137--1149.
[12]
Z. Chen, K.Wong, S. Wan, B. Zhang, and T. Zhang, 2016. Bootstrapping Face Detection with Hard Negative Examples. arXiv print arXiv: 1608. 02236, 2016.
[13]
K. He, X. Liang, L. Lin, and L. Zhang, 2016. Is Faster R-CNN Doing Well For Pedestrian Detection? European Conference on Computer Vision. New York: Springer International Publishing, 2016, pp. 443--457.
[14]
S. Ioffe and C. Szegedy. 2015. Accelerating Deep Network Batch Normalization: Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning. Lille: Computer Science, 2015, 37, pp. 448--456.
[15]
K. He, S. Ren, J. Sun, and X. Zhang, 2016. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770--778.
[16]
K. He, S. Ren, J. Sun, and X. Zhang. 2016. Identity Mappings in Deep Residual Networks. In: Computer Vision -- ECCV 2016.
[17]
A. A. Alemi, S. Ioffe, C. Szegedy, and V. Vanhoucke, 2016. Inception-v4, Inception-Resnet and the Impact of Residual Connections on Learning. arXiv preprint arXiv: 1602. 07261, 2016.
[18]
S. J. Pan and Q. Yang, 2010. A Survey on Transfer Learning. in IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345--1359, October 2010.
[19]
M. Gao, L. Lu, I. Nogues, H.R. Roth, H.C. Shin, Z. Xu, et al. 2016. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans Med Imaging. 2016, 35(5), pp. 1285--1298.
[20]
S. Christodoulidis, M. Anthimopoulos, L. Ebner, A. Christe, and S. Mougiakakou. 2017. Multisource Transfer Learning with Convolutional Neural Networks for Lung Pattern Analysis. in IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 1, pp. 76--84, January 2017.
[21]
Y. Bengio, K. Cho, Y. Dauphin, S. Ganguli, C.Gulcehre, R. Pascanu, et al. 2014. Identifying and Attacking the Saddle Point Problem in High Dimensional Non-Convex Optimization. Mathematics, 2014, 111, pp. 2475--2485.
[22]
S. Ruder. 2016. An Overview of Gradient Descent Optimization Algorithms. arXiv preprint arXiv: 1609. 04747, 2016.
[23]
W. Chen, Z. Wang, and J. Zhou. 2014. Large-Scale L-BFGS Using Map Reduce Advances in Neural Information Processing Systems. 2014 (2), pp. 1332--1340.
[24]
Ng X. M. Lia and J. X. Qian. 2002. Subspace Truncated Newton Algorithm for Large-Scale Bound Constrained Optimization. Journal of Zhejiang University: Science Edition, 2002, 29(5), pp. 494--499.
[25]
Y. Bengio, R. Collobert, J. Louradour, and J. Weston. 2009. Curriculum Learning. In Proceedings of the 26th Annual International Conference on Machine Learning (ICML'09). ACM, New York, NY, USA, pp. 41--48.
[26]
R. Hecht-Nielsen. 1989. Theory of the Backpropagation Neural Network. In Proceedings of the International Joint Conference on Neural Networks, pp. 593--611, June 1989.
[27]
M. J. J. P. van Grinsven, B. van Ginneken, C. B. Hoyng, C. I. Sánchez, and T. Theelen. 2016. Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images. in IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1273--1284, May 2016.
[28]
F. Ciompi, B. van Ginneken, C. Jacobs, and A. A. A. Setio. 2015. Off-the-Shelf Convolutional Neural Network Features for Pulmonary Nodule Detection in Computed Tomography Scans. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, NY, 2015, pp. 286--289.
[29]
E. Barnoy, M.S. Brown, J.G. Goldin, G.H. Kim, P. Lo, M.F. McNitt-Gray, et al. 2014. Toward Clinically Usable CAD for Lung Cancer Screening with Computed Tomography. Eur Radiol (2014) 24, 2719.
[30]
N. Camarlinghi, P. Cerello, M. E. Fantacci, E. E. Fiorina, F. Pennazio, C. Peroni, M. Saletta, and Lopez Torres. 2015. Large Scale Validation of the M5L Lung CAD on Heterogeneous CT Datasets. Medical Physics, 42(4), pp. 1477--147713.
[31]
T. S. Choi and W. J. Choi. 2013. Automated Pulmonary Nodule Detection System in Computed Tomography Images: A Hierarchical Block Classification Approach. Entropy 2013, 15(2), pp. 507--523.
[32]
S. G. Armato III, L. Bidaut, M. F. McNitt-Gray, G. McLennan, C.R. Meyer, A. P. Reeves, et al. 2011. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans. Med. Phys., 38: pp. 915--931.
[33]
S. G. Armato III, T. Duindam, B. de Hoop, B. van Ginneken, K. Murphy, M. Niemeijer, et al. 2010. Comparing and Combining Algorithms for Computer-Aided Detection of Pulmonary Nodules in Computed Tomography Scans: The ANODE09 Study. Medical Image Analysis, Vol. 14, No. 6, 2010, pp. 707--722, ISSN 1361-8415.

Cited By

View all
  • (2022)MaxDropoutV2: An Improved Method to Drop Out Neurons in Convolutional Neural NetworksPattern Recognition and Image Analysis10.1007/978-3-031-04881-4_22(271-282)Online publication date: 4-May-2022

Index Terms

  1. Idiopathic Interstitial Pneumonias Medical Image Detection Using Deep Learning Techniques: A Survey

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ACMSE '19: Proceedings of the 2019 ACM Southeast Conference
      April 2019
      295 pages
      ISBN:9781450362511
      DOI:10.1145/3299815
      • Conference Chair:
      • Dan Lo,
      • Program Chair:
      • Donghyun Kim,
      • Publications Chair:
      • Eric Gamess
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 18 April 2019

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Convolutional Neural Networks
      2. Deep learning methods
      3. lung nodule classifications

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Conference

      ACM SE '19
      Sponsor:
      ACM SE '19: 2019 ACM Southeast Conference
      April 18 - 20, 2019
      GA, Kennesaw, USA

      Acceptance Rates

      Overall Acceptance Rate 502 of 1,023 submissions, 49%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)3
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 15 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)MaxDropoutV2: An Improved Method to Drop Out Neurons in Convolutional Neural NetworksPattern Recognition and Image Analysis10.1007/978-3-031-04881-4_22(271-282)Online publication date: 4-May-2022

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media