skip to main content
10.1145/3301879.3301901acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbeConference Proceedingsconference-collections
research-article

Effect of Adaptive Changes of Lysophosphatidylethanolamine Content on Ampicillin Resistance of Yersinia Pseudotuberculosis

Authors Info & Claims
Published:12 November 2018Publication History

ABSTRACT

Most antibiotics are targeted at intracellular processes. Therefore, their effects are determined by an ability to penetrate bacterial membranes. Mechanism of reducing permeability of porin channels in Gram-negative bacteria is the least known one among the possible reasons of antibiotic resistance. The adaptive accumulation of lysophosphatidylethanolamine (LPE), which is observed under conditions typical for the parasitic phase (in particular, the availability of glucose) of Gram-negative bacteria Yersinia pseudotuberculsis is accompanied by rearrangements in conformation of outer membrane protein OmpF that may impede the porin channel permeability for ß-lactam antibiotics. In present study, we report that adaptive accumulation of LPE in membranes of Y. pseudotuberculosis grown in the presence of glucose reduces antibacterial effect of ampicillin. In turn, polyphenol extract from buckwheat husks (PEBH) induces both the decrease in the level of LPE and resistance of bacteria to ampicillin. Therefore, PEBH acts synergistically with ampicillin in vivo by lowering its MICs and therefore can be used as antibiotic adjuvant to improve an antibiotic's ability to cross the outer membrane. These results showed that strategies for regulation of adaptive changes in lipid matrix of bacterial membranes is a new potentially effective way to increase the sensitivity of pathogens to known antibiotics.

References

  1. Bakholdina, S.I., Sanina, N.M., Krasikova, I.N., Popova, O.B., and Solov'eva, T.F. 2004. The impact of abiotic factors (temperature and glucose) on physicochemical properties of lipids from Yersinia pseudotuberculosis. Biochimie. 86, 875--881.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bonke, R., Wacheck, S., Stüber, E., Meyer, C., Märtlbauer, E., and Fredriksson-Ahomaa, M. 2011. Antimicrobial susceptibility and distribution of β-lactamase A (blaA) and β-lactamase B (blaB) genes in enteropathogenic Yersinia species. Microb. Drug. Resist. 17, 575--581.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bystritskaya, E.P., Stenkova, A.M., Portnyagina, O.Y., Rakin, A.V., Rasskazov, V.A., and Isaeva, M.P. 2014. Regulation of Yersinia pseudotuberculosis major porin expression in response to antibiotic stress. Mol. Gen. Mikrobiol. Virusol. 2, 63--68.Google ScholarGoogle Scholar
  4. Cabanel, N., Galimand, M., Bouchier, C., Chesnokova, M., Klimov, V., and Carniel, E. 2017. Molecular bases for multidrug resistance in Yersinia pseudotuberculosis. Int. J. Med. Microbiol. 307, 371--381.Google ScholarGoogle ScholarCross RefCross Ref
  5. Daglia, M. 2012. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 23, 174--181.Google ScholarGoogle ScholarCross RefCross Ref
  6. Davydova, L.A., Bakholdina, S.I., Barkina, M.Yu., Velansky, P.V., Bogdanov, M.V., and Sanina N.M. 2016. Effect of elevated growth temperature and heat shock on lipid composition of inner and outer membranes of Yersinia pseudotuberculosis. Biochimie. 123, 103--109.Google ScholarGoogle ScholarCross RefCross Ref
  7. Davydova, L.A., Sanina, N.M., Novikova, O.D., Portnyagina, O.Y., Bakholdina, S.I., Velansky, P.V., et al. 2015. Opposite effects of lysophosphatidylethanolamines on conformation of OmpF-like porin from Yersinia pseudotuberculosis. Protein. Pept. Lett. 22, 1060--1065.Google ScholarGoogle ScholarCross RefCross Ref
  8. Delcour, A.H. 2009. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta. 1794, 808--816.Google ScholarGoogle ScholarCross RefCross Ref
  9. Ekambaram, S.P., Perumal, S.S., Balakrishnan, A., Marappan, N., Gajendran, S.S., and Viswanathan V. 2016. Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant Staphylococcus aureus. J. Intercult. Ethnopharmacol. 5, 358--363.Google ScholarGoogle ScholarCross RefCross Ref
  10. El-Halfawy, O.M., and Valvano, M.A. 2012. Non-genetic mechanisms communicating antibiotic resistance: rethinking strategies for antimicrobial drug design. Expert. Opin. Drug. Discov. 7, 923--933.Google ScholarGoogle ScholarCross RefCross Ref
  11. Fei, Q., Kent, D., Botello-Smith, W.M., Nur, F., Nur, S., Alsamarah, A., et al. 2018. Molecular mechanism of resveratrol's lipid membrane protection. Sci. Rep. 8:1587.Google ScholarGoogle Scholar
  12. Folch, J., Lees, M., and Sloane-Stanley, G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 14, 497--509.Google ScholarGoogle Scholar
  13. Ghai, I., and Ghai, S. 2017. Exploring bacterial outer membrane barrier to combat bad bugs. Infect. Drug. Resist. 30, 261--273.Google ScholarGoogle ScholarCross RefCross Ref
  14. Grumezescu, V., Holban, A.M., Barbu, I., Popescu, R.C., Oprea, A.E., Lazar, V., et al. 2016. «Nanoarchitectonics used in antiinfective therapy» in Antibiotic resistance: mechanisms and new antimicrobial approaches, ed K. Kon,Google ScholarGoogle Scholar
  15. Kloster, M.B. 1974. Determination of tannin and lignin. J. Amer. Water. Works. Assoc. 66:44.Google ScholarGoogle ScholarCross RefCross Ref
  16. Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A.K., Wertheim, H.F., Sumpradit, N., et al. 2013. Antibiotic resistance - the need for global solutions. Lancet. Infect. Dis. 13, 1057--1098.Google ScholarGoogle ScholarCross RefCross Ref
  17. Livak, K.J., and Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods. 25, 402--408.Google ScholarGoogle ScholarCross RefCross Ref
  18. Martínez-Martínez, L., Conejo, M.C., Pascual, A., Hernández-Allés, S., Ballesta, S., Ramírez De Arellano-Ramos, E., et al. 2000. Activities of imipenem and cehalosporins against clonally related strains of Escherichia coli hyperproducing chromosomal beta-lactamase and showing altered porin profiles. Antimicrob. Agents. Chemother. 44, 2534--2536.Google ScholarGoogle ScholarCross RefCross Ref
  19. Masi, M. Réfregiers, K.M. Pos, J.M. Pagès. 2017. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat. Microbiol. 2, 1700.Google ScholarGoogle ScholarCross RefCross Ref
  20. Moya-Torres, A., Mulvey, M.R., Kumar, A., Oresnik, I.J., and Brassinga, A.K. 2014. The lack of OmpF, but not OmpC, contributes to increased antibiotic resistance in Serratia marcescens. Microbiology. 160:1882--1892.Google ScholarGoogle ScholarCross RefCross Ref
  21. Pagès, J.M., James, C.E., and Winterhalter M. 2008. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 6, 893--903.Google ScholarGoogle ScholarCross RefCross Ref
  22. Reutov, V.A., Zabolotnaya, A.M., Anufriev, A.V., and Lim, L.A. 2018. Method for obtaining dye from buckwheat husks. Patent of Russian Federation RU2653025. Priority - May 04Google ScholarGoogle Scholar
  23. Rogers, G.B., Carroll, M.P., and Bruce, K.D. 2012. Enhancing the utility of existing antibiotics by targeting bacterial behaviour? Br. J. Pharmacol. 165:845--857.Google ScholarGoogle ScholarCross RefCross Ref
  24. Sanina, N., Davydova, L., Bakholdina, S., Novikova, O., Pornyagina, O., Solov'eva, T., et al. 2013. Effect of phenol-induced changes in lipid composition on conformation of OmpF-like porin of Yersinia pseudotuberculosis. FEBS Lett. 587, 2260--2265.Google ScholarGoogle ScholarCross RefCross Ref
  25. Scorciapino, M.A., Acosta-Gutierrez, S., Benkerrou, D., D'Agostino, T., Malloci, G., Samanta, S., et al. 2017. Rationalizing the permeation of polar antibiotics intoGram-negative bacteria. J. Phys. Condens. Matter. 29:113001.Google ScholarGoogle ScholarCross RefCross Ref
  26. Thomas, A.D., and Booth, I.R. 1992. The regulation of expression of the porin gene ompC by acid pH. J. Gen. Microbiol. 138, 1829--1835.Google ScholarGoogle ScholarCross RefCross Ref
  27. Zheng, L., Lin, Y., Lu, S., Zhang, J., and Bogdanov, M. 2016. Biogenesis, transport and remodeling of lysophospholipids in Gram-negative bacteria. Biochim Biophys Acta 1862, 1404--1413.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Effect of Adaptive Changes of Lysophosphatidylethanolamine Content on Ampicillin Resistance of Yersinia Pseudotuberculosis

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICBBE '18: Proceedings of the 2018 5th International Conference on Biomedical and Bioinformatics Engineering
      November 2018
      156 pages
      ISBN:9781450365611
      DOI:10.1145/3301879

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 November 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)2
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader