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ABSTRACT
Machine learning (ML) techniques are increasingly applied to decision-
making and control problems in Cyber-Physical Systems among

which many are safety-critical, e.g., chemical plants, robotics, au-

tonomous vehicles. Despite the significant benefits brought by ML

techniques, they also raise additional safety issues because 1) most

expressive and powerful ML models are not transparent and behave

as a black box and 2) the training data which plays a crucial role in

ML safety is usually incomplete. An important technique to achieve

safety for ML models is “Safe Fail”, i.e., a model selects a reject

option and applies the backup solution, a traditional controller or

a human operator for example, when it has low confidence in a

prediction.

Data-driven models produced by ML algorithms learn from train-

ing data, and hence they are only as good as the examples they have

learnt. As pointed in [17], ML models work well in the “training
space” (i.e., feature space with sufficient training data), but they

could not extrapolate beyond the training space. As observed in

many previous studies, a feature space that lacks training data

generally has a much higher error rate than the one that contains

sufficient training samples [31]. Therefore, it is essential to iden-

tify the training space and avoid extrapolating beyond the training

space. In this paper, we propose an efficient Feature Space Partition-

ing Tree (FSPT ) to address this problem. Using experiments, we also

show that, a strong relationship exists between model performance

and FSPT score.

CCS CONCEPTS
• General and reference → Reliability; • Computing method-
ologies → Classification and regression trees;
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1 INTRODUCTION
Cyber-physical systems (CPS) are the new generation of engineered

systems that continually interact with the physical world and hu-

man operators. Sensors, computational and physical processes are

all tightly coupled together in CPS. Many CPS have already been de-

ployed in safety-critical domains such as aerospace, transportation,

and healthcare.

On the other hand, machine learning (ML) techniques have

achieved impressive results in recent years. They can reduce de-

velopment cost as well as provide practical solutions to complex

tasks which cannot be solved by traditional methods. Not surpris-

ingly, ML techniques have been applied to many decision-making

and control problems in CPS such as energy control [13], surgical

robots [16], self-driving [6], and so forth. The safety-critical nature

of CPS involving ML raises the need to improve system safety and

reliability. Unfortunately, ML has many undesired characteristics

that can impede this achievement of safety and reliability.

• ML models with strong expressive power, e.g., deep neural

networks (DNN), are typically considered non-transparent.

Non-transparency is an obstacle to safety assurance because

if the model behaves as a black box and cannot be understood

by an assessor, it is difficult to develop confidence that the

model is operating as intended.

• The standard empirical risk minimization approach used to

train ML models reduces the empirical loss of a subset of

possible inputs (i.e., training samples) that could be encoun-

tered operationally. An implicit assumptionmade here is that

training samples are drawn based on the actual underlying

probability distribution. As a result, the representativeness

of training samples is a necessary condition to produce reli-

able ML models. However, this may not always be the case,

and training samples could be absent from most parts of the

feature space.

We can apply various techniques to improve the safety/reliability

of ML models [21]. To increase transparency, we can insist on

models that can be interpreted by people such as ensembles of

low-dimensional interpretable sub-models [19] or use specific ex-

plainers [22] to interpret the predictions made by ML models. We

can also exclude features [26] that are not causally related to the

outcome. A practical technique for ML to avoid unsafe predictions

is “Safe Fail”. If a model is not likely to produce a correct output, a

reject option is selected, and the backup solution, a traditional non-

ML approach or a human operator, for example, is applied, thereby

causing the system to fail safely. Such a “Safe Fail” technique is
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also not new in ML based system [5, 12]. These works [5, 12] focus

on minimizing the empirical loss of the training set and hence im-

plicitly assume the training set to be representative. For example, a

support vector machine (SVM) like classifier with a reject option [5]

could be used for this purpose. As shown in Equation 1, ϕ(x) is
the predictive output of the SVM classifier, which is interpreted as

its confidence in a prediction, and t is the threshold for the reject

option. The classifier is supposed to be most uncertain when ϕ(x)
approximates to 0.

ŷ(x) =


−1 if ϕ(x) ≤ −t
reject option, if ϕ(x) ∈ (−t , t)
1 if ϕ(x) ≥ t

(1)

As we can observe from Equation 1, to determine a reject option, we
need the prediction “confidence” ϕ(x), which however, can be mislead-
ing.

1.1 Motivation
ML models learn from a subset of possible scenarios that could be

encountered operationally. Thus, they can only be as good as the

training examples they have learnt. As pointed in [17], ML models

work well in the “training space” with a cloud of training points,

but they could not extrapolate beyond the training space. In other

words, the training data determines the training space and hence

the upper bound of ML model’s performance. A previous study [30]

has also demonstrated that a feature space that lacks training data

generally has a much higher error rate. Unfortunately, the training

data is usually incomplete in practice and covers a very small part

of the entire feature space. In fact, there is no guarantee that the

training data is even representative [24]. Here we use two simple

examples to illustrate this problem.

Example 1. Figure 1 shows the decision boundaries of an SVM
classifier to predict whether a mobile robot is turning right sharply.
The value in the contour map represents the “predictive probability”
that the input instance belongs to the class “Sharp-Right-Turn”. In this
example, the training samples are not representative of testing samples,
and only cover a very small portion of the feature space. However,
the classifier still has very high confidence beyond its training space
even though there exists no training samples. As a result, the accuracy
of testing samples decreases to 66% while the accuracy of training
samples is almost 100%.

Example 2. Figure 2 shows a toy regression problem, where 40
training samples drawn from a sine function have feature x in [0, 5],
and 10 training samples have feature x in (10, 15]. However, the testing
samples have feature x in (5, 10]. We use a neural network (NN)
regressor to fit the data, and as shown, NN does a better job in fitting
the sine function in [0, 5] than in (10, 15]. Meanwhile, it does a terrible
job in extrapolating outside of the training space, i.e., (5, 10].

1.2 Contribution
From the above examples we can observe that ML models work

well only in the “training space” (i.e., feature space with sufficient

training samples.) Meanwhile, in general, ML models have greater

potential to achieve better performance in feature space with more

training samples. Therefore, it is essential for safety-critical ML

Figure 1: Wall-following navigation task with mobile robot
SCITOS-G5 based on sensor readings from the front and left
sensor [9].

Figure 2: A toy regression example

based systems to ensure that their underlying ML modules only

work in the training space. As a result, we aim to design a novel

technique to do the following job:

(1) split the feature space into multiple partitions,

(2) identify those in which training samples are insufficient, and

(3) reject input instances from these data-lacking feature space

partitions.

We first outline the desired characteristics for such a technique:

(1) A score function is required to evaluate the resulting feature

space partitions.

(2) The boundaries of feature space partitions are preferred to

be interpretable and understandable, so that we can know,

in which partition, ML models may have poor performance.

With such information, we can collect more training samples

from these regions (if possible).

(3) Since we use this technique as a complement to ML models,

the output must be generated efficiently, and the additional

overhead should be as small as possible.

In this paper, we propose a Feature Space Partitioning Tree (FSPT)

with the characteristics mentioned above, which comprises

(1) a tree-based classifier for splitting feature space (Section 3)

with specific stopping and splitting criterion (Section 4.1 to

4.3.1), and

(2) a score function S(R) to evaluate the resulting feature space

partitions (Section 4.3.2).

As a toy example, Figure 3 shows the resulting feature space parti-

tions for Example 1. The color of each hyper-rectangle represents

the scores from FSPT. As we can see, FSPT gives very low score to
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Figure 3: The resulting feature space partitions with scores
from FSPT for classification problem in Example 1

most partitions of the feature space because the training data only

covers a small portion of the feature space
1
.

Organization: In Section 2 we present related work, and in Sec-

tion 3, we propose the technique for splitting the feature space into

multiple hyper-rectangles based on Classification And Regression

Tree (CART) [8]. We propose customization techniques (e.g., a new

splitting criterion that takes feature importance into consideration

and a score function for the resulting feature space partitions) in

Section 4. In Section 5, we introduce how to apply FSPT in ML with

a reject option. Finally, the experimental results in Section 6 also

meet our expectations that, on average, ML models have a higher

loss/error rate in feature space partitions with lower FSPT scores.

In Table 1, we list notations that will be used in the remainder of

this paper.

Table 1: Notations

Z = (X, y) data set

X N × d feature matrix with N samples and d dimensions

y label of an input instance

ŷ prediction of an input instance

y vector of labels

x feature vector of an input instance

I a particular feature index

fI importance of feature I
xkI the value of the kth sample in X on feature I
R a feature space partition

I(R) upper bound value of feature I of R
I(R) lower bound value of feature I of R
∆I(R) I(R) − I(R)
|R+ | weighted number of training samples in R
|R− | weighted number of E-points in R
G(R) Gini index of R
Ĝ(R, I, s) weighted Gini index with split feature I and value s
∆G(R) gain in Gini index

S (R) score of a resulting feature space partition R
ϕF (x) output of FSPT for input instance x
ϕM (x) output of the ML model for input instance x

2 RELATEDWORK
In order to determine whether an ML model should select a reject

option, we must obtain the “confidence” in its predictive output.

For classification problems, the output of an ML model is usually

1
Note that, it does not mean that we have to reject most input instances. In fact, if the

training data is representative, we will encounter few input instances from these low

score feature space partitions.

interpreted as its confidence in that prediction. For example, the

output obtained at the end of the softmax layers of standard deep

learning are often interpreted as the predictive probabilities. For

ensemble methods
2
, the weighted votes of the underlying classi-

fiers [27] will be used as the predictive probabilities. As a result,

existing works on classification with a reject option [5, 12] usually

determine a reject option based on the predictive output.

An implicit assumption made here is that these classifiers are

most uncertain near the decision boundaries of different classes

and the distance from the decision boundary is inversely related to

the confidence that an input instance belongs to a particular class.

This assumption is reasonable in some sense because the decision

boundaries learnt by these models are usually located where many

training samples with different labels overlap. However, if a feature

spaceX contains few or no training samples at all, then the decision

boundaries of ML models may wholly be based on an inductive bias,

thereby having much epistemic uncertainty [4]. In other words,

it is possible that an input instance coming from a feature space

partition without any training samples would be classified falsely

with a very high “predictive probability” by the ML model [10].

Prediction confidence can also be obtained by Bayesian meth-

ods. Unlike classical learning algorithm, Bayesian algorithms do

not attempt to identify “best-fit” models of the data. Instead, they

compute a posterior distribution over models P(θ |X, y). For exam-

ple, Gaussian process (GP) [25] assumes that p(f (x1), . . . , f (xN )) is
jointly GaussianN(µ, Σ). Given unobserved instance x∗, the output
ˆf (x∗) of GP is then also conditional Gaussian p( ˆf (x∗)|x∗,X, y) =
N(µ∗,σ∗). The standard deviations σ∗ can then be interpreted as

the prediction uncertainty. GP is computationally intensive and

has complexity O(N 3), where N is the number of training samples.

Bayesian methods can also be applied to neural networks (NNs).

Infinitely wide single hidden layer NNs with distributions placed

over their weights converge to Gaussian processes [18]. Variational

inference [14, 20] can be used to obtain approximations for finite

Bayesian neural networks. The dropout techniques in NNs can

also be interpreted as a Bayesian approximation of Gaussian pro-

cess [10]. Despite the nice properties of Bayesian inference, there
are some controversial aspects:

(1) The prior plays a key role in computing the marginal likeli-

hood because we are averaging the likelihood over all possi-

ble parameter settings θ , as weighted by the prior [23]. If the
prior is not carefully chosen, we may generate misleading

results.

(2) It often comes with a high computational cost, especially in

models with a large number of parameters.

The conformal prediction framework [28, 29] uses past experi-

ence to determine precise levels of confidence in new predictions.

Given a certain error probability requirement ϵ , it forms a predic-

tion interval [f (x), f (x)] for regression or a prediction label set

{Label 1, Label 2, . . .} for classification so that the interval/set con-

tains the actual prediction with a probability greater than 1 − ϵ .
However, its theoretical correctness depends on the assumption that all
the data are independent and identically distributed (later, a weaker
assumption of “exchangeability” replaces this assumption). Besides,

2
Ensemble methods are learning algorithms that construct a set of classifiers and then

classify new data points by taking a weighted vote of their predictions.
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points representing empty space

points representing training samples

Figure 4: Decision bound-
aries of a classifier

points representing empty space

points representing training samples

Figure 5: Decision bound-
aries of a tree-based classi-
fier

for regression problems, it tends to produce prediction bands whose

width are roughly constant over the whole feature space [15].

3 BASIC IDEA OF PARTITIONING THE
FEATURE SPACE

Our objective is to distinguish the feature space partitions with a

high density of training samples from those with a low density of

training samples. Let’s assume that there is another category of

data points representing the empty feature space (E-points for short)
that are uniformly distributed among the entire feature space. As

shown in Figure 4, we can use a classifier to distinguish the training

data points from E-points. Then, the output of the classifier can be

used to indicate whether an input instance is from a feature space

partition with sufficient training data.

However, the number of E-points we need to sample will increase

exponentially with the number of features. There are two possible

solutions to address this issue:

(1) apply dimension reduction techniques such as ensembles of

low-dimensional sub-models [19] or

(2) use tree/rule-based classifiers because their following prop-

erties are suitable for our task.

(a) As shown in Figure 5, the feature space partitions con-

structed by a tree-based classifier are hyper-rectangles. As

a result, we can get useful information about each parti-

tion, e.g., the side length of each feature, the volume, and

the number of training samples within it, very easily.

(b) Suppose the initial feature space R is split into R1 and R2
by feature I and value s , such that ∀x ∈ R1 : xI ≤ s and
∀x ∈ R2 : xI > s . The number of E-points belonging to R1
and R2 will be in proportion to the side length of feature I,
i.e., ∆I(R1) = s − I(R) and ∆I(R2) = I(R) − s because the
E-points are assumed to be uniformly distributed.

Here I(R) and I(R) denote the lower and upper bound values of

feature I, respectively. Let Z = (X, y) denote the data set, where X
and y denote the featurematrix and the vector of labels, respectively,

then the lower and upper bound values of feature I of the entire

feature space are as follows.

Upper Bound :I = max

x∈X
xI

Lower Bound :I = min

x∈X
xI

3.1 Tree Construction
In this paper, we consider the classification and regression tree

(CART) [8] for feature space partitioning. CART uses Gini index

to measure the purity of a feature space partition. Gini index is

a measure of how often a randomly chosen element from the set

would be incorrectly labeled if it was randomly labeled according to

the distribution of labels in the subset. Suppose |Rk | and |R | denote
the weighted number of data points labeled k and the weighted

number of all the data points in R, respectively. Then the Gini index
of R can be computed as follows.

G(R) =
K∑
k=1

|Rk |
|R |

(
1 − |R

k |
|R |

)
(2)

Suppose feature space R is split into R1 and R2 by feature I and
value s . CART will always select the split point to minimize the

weighted Gini index of R1 and R2.

⟨I, s⟩ = arg min

⟨I, s ⟩
Ĝ(R, I, s), where (3)

Ĝ(R, I, s) = |R1 ||R | G(R1) +
|R2 |
|R | G(R2)

The gain in the Gini index from the split is then

∆G(R) = G(R) −min

I, s
Ĝ(R, I, s) (4)

Let + and − denote the label of training data points and E-points,
respectively. Suppose there are infinite E-points uniformly dis-

tributed in the hyper-rectangle R. If we set the weight of each

E-point to
|R− |
∞ , the weighted number of E-points

3
in R is equal

to
|R− |
∞ × ∞ = |R− |. Let |R+ | denote the weighted number

4
of

training points in the hyper-rectangle R. The weighted Gini index

after R is split into R1 and R2 is equal to

|R+
1
| + |R−

1
|

|R+ | + |R− | ×G(R1) +
|R+

2
| + |R−

2
|

|R+ | + |R− | ×G(R2) , where (5)

|R−
1
| =

s − I(R)
I(R) − I(R)

× |R− | =
s − I(R)
∆I(R) × |R

− | (6)

|R−
2
| = I(R) − s

I(R) − I(R)
× |R− | = I(R) − s

∆I(R) × |R
− | (7)

4 CART CUSTOMIZATIONS FOR FSPT
FEASIBILITY

In this section, we propose several customization techniques for

CART to realize FSPT so that it is suitable for identifying feature

space partitions without sufficient training samples.

3
In the rest of this paper, when we refer to the number of E-points, what we actually

mean is the weighted number.

4
We assume the weight of a single training sample is equal to 1.
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points representing training samples

R1

R2

Figure 6: Stop Construction

4.1 Stopping Criterion and the Number of
E-points

The first question we must answer is when can we stop constructing
the tree because otherwise, the tree can grow infinitely. In our case,

we can stop further splitting feature space partition R if all training

samples are uniformly distributed in R approximately. As shown in

Figure 6, we can stop splitting R1 and R2 because data points are
evenly distributed in them, even though the densities of training

samples are different. The intuition for the stopping criterion is

that, when the stopping condition is satisfied, any further split can

only generate two hyper-rectangles with similar data distributions.

Another parameter we need to determine is the number of E-

points |R− |. According to Equations 6 and 7, the number of E-points

|R− |for hyper-rectangle R could decrease drastically if the split

value s is close to the bound of feature I, i.e., I(R) − s → 0 or

s − I(R) → 0. For a high dimension space, |R− | will become close to

0 after several splits. As a result, any further division can only result

in a negligible decrease in the Gini Index and hence a negligible

increase in the gain of Gini Index, which makes it more difficult to

find the optimal split point.

To address the above two issues, we fix |R− | = |R+ | at each split.

In this case (|R+ | = |R− |), when the condition, i.e., all training

samples are uniformly distributed in R approximately, is satisfied,

the gain in Gini index ∆G(R) will be close to 0.

=0.5︷︸︸︷
G(R) − |R1 ||R | ×

→0.5︷︸︸︷
G(R1) −

|R2 |
|R |

→0.5︷︸︸︷
G(R2) → 0

Thus, the gain in Gini index ∆G(R) → 0 is a necessary condition

to indicate whether the stopping criterion (training samples are

evenly distributed in R approximately) is satisfied. However, it is

not a sufficient condition. Figure 7 shows an exceptional scenario

where ∆G(R) is close to 0, but training samples are not distributed

uniformly in R.
To address this issue, we use a counter c to record the number of

successive times that ∆G(R) ≤ ϵ where ϵ → 0. The construction

process terminates when c is greater than some threshold λ. For
example, in Figure 7, ∆G(R) ≤ ϵ and hence c ← c + 1. After we
split R into R1 and R2,

∆G(R1) = G(R1) −
|R11 |
|R1 |

G(R11) −
|R12 |
|R1 |

G(R12) > ϵ

∆G(R2) = G(R2) −
|R21 |
|R2 |

G(R21) −
|R22 |
|R2 |

G(R22) > ϵ

points representing training samples

R1

R2

R11

R21
R12

R22

Figure 7: Exceptional Scenario

and hence the counter c is reset to 0. As a result, the tree con-

struction algorithm will continue to split R1 → {R11,R12} and
R2 → {R21,R22}.

Meanwhile, λ need not necessarily be a fixed value. When there

are lots of training samples in R, then we can assign a larger value

to λ. Otherwise, if |R+ | is very small, the construction process can

terminate immediately.

4.2 Split Points
One of the critical problems in tree learning is to find the best

split as represented by Equation 3. A simple greedy solution is

to enumerate over all possible split values on all the features. In

our case, however, there are infinite possible split values, because

we assume there are infinite E-points uniformly distributed in the

feature space.

Suppose we want to find the best split for the hyper-rectangle

R on feature I. Let SI = {s1, s2, . . . , sN } denote the set of unique
values of feature I of training samples in R, where items in SI
are sorted in ascending order, i.e., I(R) ≤ s1 < . . . < sN ≤ I(R).
Let cdf(s) denote the cumulative distribution function of training
samples in R on feature I. Then ∀s ∈ [sk , sk+1), we have cdf(s) =
cdf(sk ) because there exists no training sample with feature Iwithin
(sk , sk+1). For simplicity, we assume feature I is normalized to 1,

i.e., ∆I(R) = I(R) − I(R) = 1, and hence the split value s ∈ [0, 1]. If
we split R into R1 and R2 by value s and feature I, then

G(R1) = 2 ×
( |R+

1
|

|R+
1
| + |R−

1
|

) ( |R−
1
|

|R+
1
| + |R−

1
|

)
= 2

(
cdf(s)

cdf(s) + s

) (
s

cdf(s) + s

)
G(R2) = 2 ×

( |R+
2
|

|R+
2
| + |R−

2
|

) ( |R−
2
|

|R+
2
| + |R−

2
|

)
= 2

(
1 − cdf(s)

2 − cdf(s) − s

) (
1 − s

2 − cdf(s) − s

)
⇒ Ĝ(R, I, s) = cdf(s) + s

2

×G(R1) +
2 − s − cdf(s)

2

×G(R2)

=

(
cdf(s)s

cdf(s) + s

)
+

(
(1 − cdf(s))(1 − s)
2 − cdf(s) − s

)
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Let’s compute the partial derivative of weighted Gini index on s .

∂Ĝ(R, I, s)
∂s

=

(
cdf(s)

cdf(s) + s

)
2

−
(

1 − cdf(s)
2 − cdf(s) − s

)
2

=

>0︷                            ︸︸                            ︷(
cdf(s)

cdf(s) + s +
1 − cdf(s)

2 − cdf(s) − s

)(
cdf(s) − s

(cdf(s) + s)(2 − cdf(s) − s)

)
When s ∈ [sk , sk+1), cdf(s) = cdf(sk ) is a constant value. If sk ≥
cdf(sk ) ⇒

∂Ĝ(R,I,s)
∂s ≤ 0, then Ĝ(R, I, s) is minimized when s =

sk+1 − ϵ , where ϵ → +0. If sk+1 ≤ cdf(sk ) ⇒
∂Ĝ(R,I,s)

∂s ≥ 0, then

Ĝ(R, I, s) is minimized when s = sk . Finally if sk < cdf(sk ) < sk+1,
then Ĝ(R, I, s) is minimized when s = sk or s = sk+1 − ϵ .

Therefore, there is no need to try all infinite split values, and the

potential split value set is reduced to{
max

(
I(R), s1 − ϵ

)
, s1, s2 − ϵ, s2, s3 − ϵ, . . . , sN

}
It can still be computationally demanding to enumerate all the

split points in the candidate set, especially when the data cannot

fit entirely into memory. To address this issue, we can also use

approximate split finding algorithms (e.g., use candidate splitting

points according to percentiles of feature distribution), which is

quite common in tree learning algorithms.

4.3 New Splitting Criterion and Score Function
In general, more training samples are required for an ML model to

achieve good performance within a feature space partition R with

a larger volume V (R), where

V (R) =
∏
I

(
I(R) − I(R)

)
=

∏
I
∆I(R)

This scenario is clearly shown in Example 2 in Section 1.1. While

two feature space partitions x ∈ [0, 5] and x ∈ (10, 15] have the
same volume, the MLmodel fits the sine function much better in the

former with 40 training samples than in the latter with 10 training

samples. Of course, this is not always the case, especially when the

model is poorly trained. For example, imagine we have a model

whose output is always zero. Then it is evident that its performance

has a very weak dependence on the training samples. Thus, the

premise to infer ML models’ performance in different feature space

partitions from training samples and volume V (R) is that it does
not over-fit or under-fit.

Another challenge in inferring ML models’ performance in R
from its volume and training samples is that all features are equally

important in the computation of volume. Besides, as long as there

exists any feature I with ∆I(R) close to 0, the volume of R will also

be close to 0 irrespective of the feature importance of I and the side
length of other features.

As shown in Figure 8, R1 and R2 have the same number of

training samples, but R1 covers a larger feature space. If feature x
and feature y are equally important, then we can expect that an ML

model will have a higher fitting degree of the objective function

in R2 than in R1, if it does not over-fit or under-fit. However, if
feature y is of very low importance or irrelevant to the objective

function, then the previous inference can be misleading.

points representing training samples

R1

R2

feature x
fea

tu
re

y

Figure 8: Problem of Ir-
relevant Features

points representing training samples

3 994 3

Figure 9: Resulting
hyper-rectangles have
too small rectangles

To address this problem, we can exclude all the irrelevant fea-

tures, and meanwhile, incorporate feature importance into the split-

ting criterion as well as the score function for the resulting feature

space partitions. There are lots of techniques that can be used to

assess feature importance [7, 11, 32]. Of course, it is not trivial

to obtain precise feature importance values. Meanwhile, features

that are globally important may not be important in the local con-

text, and vice versa. In this paper, we only consider global feature

importance with constant values.

Another issue is that we also do not want to split the feature

space into too many hyper-rectangles with an extremely small side

length on a particular feature I, i.e., ∆I(R)∆I → 0, where ∆I is the side
length of the entire feature space. For example, in Figure 9, since

∆I(R)
∆I = 0.3%→ 0, we will not further split on this feature unless

it can bring significant gain in the splitting criterion.

To meet the requirements mentioned above, we propose:

(1) A more reasonable splitting criterion named weighed gain

in Gini index, which considers 1) Ĝ(R, I, s), 2) the feature
importance values { f1, f2, . . . , fd } and 3) the side length of

each feature ∆I(R).
(2) A heuristic score function to assess the resulting feature

space partitions.

4.3.1 Splitting Criterion. Equation 8 shows the new criterion for

selecting splitting points.

⟨I, s⟩ = arg max

⟨I, s ⟩

fI × ∆I(R)
∆I

∆G(R) (8)

where ∆G(R) =
(
G(R) − Ĝ(R, I, s)

)
The intuition of this criterion is simple.We prefer to split on features

that are important and have a larger side length, unless there is a

significant increase in ∆G(R).

4.3.2 Score Function. We propose a heuristic score function in

Equation 9 to evaluate the resulting hyper-rectangle R, and it takes
both the feature importance and the side length of each feature into

consideration.

S(R) =
∑
I

fI ×
|R+ |

|R+ | + ∆I(R)
∆I × E

(9)

In Equation 9, E is a hyperparameter. We set E = N
d in our exper-

iments in Section 6, where N is the number of training samples
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and d is the number of features. The intuition for Equation 9 is

that we evaluate R on each feature separately based the training

samples and side length ∆I(R). For example, if ∆I(R) → 0, i.e.,

training samples in R have the same value on feature I, then R
is supposed to get the full score of feature I (i.e., fI). After FSPT
completes the tree construction, the final scores for each partition

can be normalized into the range [0, 1].
Complexity: Suppose FSPT has depthT , then the score of an input

instance can be calculated efficiently with complexity O(T ). Since
each feature space partition contains at least one training sample,

the run-time complexity is O(logN )

5 REJECT MODEL
Suppose input instance x is in feature space partition R, the output
of FSPT for x is

ϕF (x) = S(R)
Regression Problems: We can use ϕF (x) to determine whether

the prediction for input instance x should be rejected in regression

problems directly. Let ϕM (x) denote the predictive output of ML

models for input instance x , then a reject option can be selected

when ϕF (x) is smaller than a particular threshold t .

ŷ(x) =
{
ϕM (x) if ϕF (x) ≥ t

reject option, otherwise

(10)

ClassificationProblems: SupposeϕcM (x) denotesMLmodels’ pre-

dictive probability that x belongs to class “c”, then the final predic-

tive class for x is

c = argmax

c
{ϕcM (x)}

Let ϕM (x) = maxc {ϕcM (x)}, we use both ϕM (x) and ϕF (x) to de-

termine whether a reject option should be selected. The reason to

adopt such a reject strategy is that an ML model’s accuracy for an

input instance depends on its distance to the decision boundaries

significantly.

Figure 10 shows a toy example of a binary classification problem.

As we can see, few training samples exist in feature space partition

R1 and R2 perhaps due to small probability density there. Thus,

FSPT gives relatively low scores to R1 and R2 because there is not
sufficient evidence to draw a confident conclusion. However, the

CLASS 2CLASS 1

R1 R2

Decision Boundary

Figure 10: Training samples for a binary classification prob-
lem

model may have 100% accuracy in R1 and R2 just because its guess
is “lucky” enough to be correct.

Thus, for classification problems, the output of FSPT will be

used as a complement to the ML model, and the prediction of ML

models will be adopted only when both ϕF (x) and ϕcM (x) exceed
the corresponding thresholds.

ŷ(x) =
{
c if ϕcM (x) ≥ t1 ∧ ϕF (x) ≥ t2

reject option, otherwise

(11)

6 EVALUATION
In this section, we evaluate the effectiveness of our proposed tech-

nique for both regression and classification problems. The feature

importance values used in the experiments are obtained from Ran-

dom Forest [7]. We investigate the performance of three popular

ML models, i.e.,

(1) Neural Networks (NN)

(2) Support Vector Machine (SVM)

(3) Gaussian Process (GP)

when we set different rejection thresholds for them. Since GP can

offer standard deviations for testing samples in regression prob-

lems, we also investigate the relationship between the standard

deviations and ϕF (x). For a given data set Z, testing samples are

randomly sampled from Z. In Figure 11, 16, 21 and 22, we show the

distributions of testing samples with respect to the scores.

6.1 Regression Problems
For regression problems, we evaluate the reject model in Equa-

tion 10. We use box-plot (Figure 12 to 20) to show absolute loss

|y−ŷ |/standard deviation of testing samples with different rejection

thresholds t ∈ {0, 0.1, 0.2, 0.3, . . . , 1}. We consider the following

two applications in the experiments.

Quality Prediction in a Mining Process: This dataset is about a
flotation plant which is a process used to concentrate the iron ore [2].

The goal of this task is to predict the percentage of Silica at the end

of the process from 22 features. As this value is measured every hour,

if we can predict how much silica is in the ore concentrate, we can

help the engineers, giving them early information to take actions.

Hence, they will be able to take corrective actions in advance and

also help the environment by reducing the amount of ore that goes

to tailings.

Figure 11: Mining Process: sample distribution

The Inverse Dynamics of a SARCOS Robot Arm: This task is

to map from a 21-dimensional input space (7 joint positions, 7 joint

velocities, 7 joint accelerations) from a seven degrees-of-freedom

SARCOS robot arm [3] to the inverse dynamics of a corresponding

torque. An inverse dynamics model can be used in the following

manner: a planning module decides on a trajectory that takes the
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Figure 12: Mining Process: absolute loss for NNs

Figure 13: Mining Process: absolute loss for SVM

Figure 14: Mining Process: absolute loss for GP

Figure 15: Mining Process: standard deviation for GP

robot from its start to goal states, and this specifies the desired

positions, velocities and accelerations at each time. The inverse dy-

namics model is used to compute the torques needed to achieve this

trajectory and errors are corrected using a feedback controller [25].

Figure 16: SARCO: sample distribution

Figure 17: SARCO: absolute loss for NNs

Figure 18: SARCO: absolute loss for SVM

Figure 19: SARCO: absolute loss for GP

6.2 Classification Problems
For classification problems, we evaluate the reject model in Equa-

tion 11. Through the experiment results, we show that input in-

stance with both high scores from FSPT ϕF (x) and high scores (i.e.,

predictive probability output ϕM (x)) from ML models has a lower

error rate. Let t1 denote the rejection threshold for ML model, and

t2 denote rejection threshold for FSPT. We partition testing samples

into group G1 and G2.
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Figure 20: SARCO: standard deviation for GP

(1) G1: ϕM (x) ≥ t1 ∧ ϕF (x) ≥ t2
(2) G2: ϕM (x) ≥ t1 ∧ ϕF (x) < t2

From Table 2 to Table 7, we present the accuracy of G1 and G2 for

different combinations of t1 and t2. Besides, we also show the mean

value of ϕM (x) and proportion of G1 and G2. We show that even

whenG1 andG2 have similar mean values ofϕM (x), which indicates
that ML models have similar confidence in the predictions of the

testing samples in G1 and G2, their accuracy of G1 is higher than

G2. We consider the following two applications in the experiments.

The Navigation Task for Mobile Robot SCITOS-G5: This task
is to map 24-dimension input, i.e., sensor readings from the 24

sensors of the mobile robot SCITOS-G5 [9] to 4 classes of behaviors:

1) “Move-Forward”, 2) “Sharp-Right-Turn”, 3) “Slight-Left-Turn” and

4) “Slight-Right-Turn”. ML models will be trained for the mobile

robot to take decisions that determine its correct movement.

Figure 21: SCITOS: sample distribution

Table 2: SCITOS: NNs

t1 t2 G1 G2

Proportion Accuracy ϕM (x ) Proportion Accuracy ϕM (x )
0.90 0.00 1.00 0.925 0.970 0.00 nan nan

0.90 0.30 0.86 0.925 0.970 0.14 0.921 0.972

0.90 0.60 0.55 0.930 0.970 0.45 0.918 0.970

0.90 0.90 0.14 0.931 0.972 0.86 0.924 0.970

0.95 0.00 1.00 0.947 0.984 0.00 nan nan

0.95 0.30 0.85 0.948 0.984 0.15 0.944 0.984

0.95 0.60 0.54 0.951 0.984 0.46 0.942 0.984

0.95 0.90 0.15 0.956 0.984 0.85 0.946 0.984

Breast Cancer Diagnosis: This task is to map 30 features com-

puted from a digitized image of a fine needle aspirate (FNA) of a

breast mass to Class “benign” and Class “malignant” [1].

6.3 Short Summary:
As we can observe from the experimental results in this section,

a strong relationship exists between the ML model’s performance

Table 3: SCITOS: SVM

t1 t2 G1 G2

Proportion Accuracy ϕM (x ) Proportion Accuracy ϕM (x )
0.90 0.00 1.00 0.960 0.963 0.00 nan nan

0.90 0.30 0.86 0.961 0.963 0.14 0.954 0.962

0.90 0.60 0.56 0.967 0.962 0.44 0.950 0.963

0.90 0.90 0.15 0.959 0.961 0.85 0.960 0.963

0.95 0.00 1.00 0.968 0.979 0.00 nan nan

0.95 0.30 0.86 0.970 0.979 0.14 0.958 0.979

0.95 0.60 0.56 0.975 0.978 0.44 0.959 0.980

0.95 0.90 0.14 0.974 0.978 0.86 0.967 0.979

Table 4: SCITOS: GP

t1 t2 G1 G2

Proportion Accuracy ϕM (x ) Proportion Accuracy ϕM (x )
0.60 0.00 1.00 0.975 0.703 0.00 nan nan

0.60 0.30 0.52 0.989 0.712 0.48 0.960 0.694

0.60 0.60 0.12 1.000 0.738 0.88 0.972 0.698

0.60 0.90 0.02 1.000 0.782 0.98 0.975 0.702

0.70 0.00 1.00 0.989 0.761 0.00 nan nan

0.70 0.30 0.58 0.989 0.762 0.42 0.989 0.761

0.70 0.60 0.18 1.000 0.764 0.82 0.986 0.761

0.70 0.90 0.03 1.000 0.785 0.97 0.989 0.761

Figure 22: Breast Cancer Diagnosis: sample distribution

Table 5: Breast Cancer Diagnosis: NNs

t1 t2 G1 G2

Proportion Accuracy ϕM (x ) Proportion Accuracy ϕM (x )
0.80 0.00 1.00 0.892 0.990 0.00 nan nan

0.80 0.20 0.75 0.916 0.992 0.25 0.821 0.981

0.80 0.40 0.48 0.907 0.994 0.52 0.879 0.986

0.80 0.60 0.26 0.926 0.993 0.74 0.881 0.988

0.90 0.00 1.00 0.899 0.994 0.00 nan nan

0.90 0.20 0.76 0.914 0.996 0.24 0.849 0.990

0.90 0.40 0.48 0.905 0.997 0.52 0.892 0.992

0.90 0.60 0.26 0.924 0.997 0.74 0.890 0.993

and the scores ϕF (x) from FSPT. In regression problems, we can

reduce both mean error and maximum error, and thereby improve

the reliability of ML models, by rejecting predictions with very

small ϕF (x). In classification problems, by rejecting input instances

with either low FSPT score or ML model score, the prediction accu-

racy can also be improved. Even among the predictions in which

ML models have similar confidence (i.e., predictions with similar

predictive probability ϕM (x)), the error rate of those with higher

ϕF (x) is lower than the rest.

7 CONCLUSION
In this paper, we propose a feature space partition tree (FSPT)

to split the feature space into multiple partitions with different

training data densities. The resulting feature space partitions are

scored using a heuristic metric based on the principle that an ML

model’s performance in a particular feature space partition R is
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Table 6: Breast Cancer Diagnosis: SVM

t1 t2 G1 G2

Proportion Accuracy ϕM (x ) Proportion Accuracy ϕM (x )
0.80 0.00 1.00 0.988 0.936 0.00 nan nan

0.80 0.20 0.77 0.995 0.938 0.23 0.966 0.928

0.80 0.40 0.47 0.992 0.942 0.53 0.985 0.930

0.80 0.60 0.27 0.985 0.944 0.73 0.989 0.933

0.90 0.00 1.00 0.995 0.964 0.00 nan nan

0.90 0.20 0.78 1.000 0.966 0.22 0.976 0.959

0.90 0.40 0.48 1.000 0.971 0.52 0.990 0.958

0.90 0.60 0.28 1.000 0.969 0.72 0.993 0.962

Table 7: Breast Cancer Diagnosis: GP

t1 t2 G1 G2

Proportion Accuracy ϕM (x ) Proportion Accuracy ϕM (x )
0.55 0.00 1.00 0.940 0.914 0.00 nan nan

0.55 0.20 0.76 0.944 0.913 0.24 0.925 0.920

0.55 0.40 0.48 0.943 0.899 0.52 0.937 0.928

0.55 0.60 0.25 0.964 0.912 0.75 0.932 0.915

0.60 0.00 1.00 0.948 0.923 0.00 nan nan

0.60 0.20 0.76 0.955 0.922 0.24 0.924 0.924

0.60 0.40 0.47 0.954 0.910 0.53 0.942 0.934

0.60 0.60 0.25 0.975 0.925 0.75 0.939 0.922

upper bounded by the training samples within R. Based on FSPT,

we propose two rejection models for regression and classification

problems, respective. The preliminary experimental results in Sec-

tion 6 also meet our expectations. However, the current version of

FSPT has many limitations to be addressed:

(1) First, the criterion to construct FSPT depends on the feature

importance or model’s reliance on different features. How-

ever, it is not a trivial task to get accurate feature importance

values. Besides, features that are globally important may not

be important in the local context, and vice versa. Thus, one

possible direction to improve FSPT is to incorporate local

feature importance in it.

(2) Another major limitation is that FSPT is only suitable for low-

dimension tabular data sets. For complex input data such as

images, we should apply FSPT to more meaningful features

extracted by other techniques rather than pixel values. For

example, DNN trained on images can extract eyes, tail etc.

as features in their last layers.

(3) Besides, since the score function is heuristic, we can only

show that a strong relationship exists between model perfor-

mance and FSPT score. In the future, we also plan to derive

a more accurate score function.

(4) Finally, we also need to derive a threshold for reject option

for a required confidence level. Perhaps, we can apply the

conformal prediction framework [28, 29] in the different

feature space partitions locally, and derive a threshold for a

certain error probability requirement.
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