skip to main content
research-article

Smoothed Online Convex Optimization via Online Balanced Descent

Published:17 January 2019Publication History
Skip Abstract Section

Abstract

We study smoothed online convex optimization, a version of online convex optimization where the learner incurs a penalty for changing her actions between rounds. Given a Ω(pd) lower bound on the competitive ratio of any online algorithm, where d is the dimension of the action space, we ask under what conditions this bound can be beaten. We introduce a novel algorithmic framework for this problem, Online Balanced Descent (OBD), which works by iteratively projecting the previous point onto a carefully chosen level set of the current cost function so as to balance the switching costs and hitting costs. We demonstrate the generality of the OBD framework by showing how, with different choices of "balance," OBD can improve upon state-of-theart performance guarantees for both competitive ratio and regret; in particular, OBD is the first algorithm to achieve a dimension-free competitive ratio, 3 + O(1/α), for locally polyhedral costs, where - measures the "steepness" of the costs. We also prove bounds on the dynamic regret of OBD when the balance is performed in the dual space that are dimension-free and imply that OBD has sublinear static regret.

References

  1. R. Agrawal, M. Hegde, and D. Teneketzis. Multi-armed bandit problems with multiple plays and switching cost. Stochastics and Stochastic Reports, 29(4):437--459, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  2. L. Andrew, S. Barman, K. Ligett, M. Lin, A. Meyerson, A. Roytman, and A. Wierman. A tale of two metrics: Simultaneous bounds on competitiveness and regret. In Conference on Learning Theory, pages 741--763, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Antoniadis, N. Barcelo, M. Nugent, K. Pruhs, K. Schewior, and M. Scquizzato. Chasing convex bodies and functions. In Latin American Symposium on Theoretical Informatics, pages 68--81. Springer, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  4. M. Badiei, N. Li, and A. Wierman. Online convex optimization with ramp constraints. In IEEE Conference on Decision and Control, pages 6730--6736, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  5. N. Bansal, A. Gupta, R. Krishnaswamy, K. Pruhs, K. Schewior, and C. Stein. A 2-competitive algorithm for online convex optimization with switching costs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 96--109, 2015.Google ScholarGoogle Scholar
  6. A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge University Press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Borodin, N. Linial, and M. E. Saks. An optimal on-line algorithm for metrical task system. J. ACM, 39(4):745--763, Oct. 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. N. Chen, A. Agarwal, A. Wierman, S. Barman, and L. L. Andrew. Online convex optimization using predictions. In ACM SIGMETRICS Performance Evaluation Review, volume 43, pages 191--204. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. N. Chen, J. Comden, Z. Liu, A. Gandhi, and A. Wierman. Using predictions in online optimization: Looking forward with an eye on the past. SIGMETRICS Perform. Eval. Rev., 44(1):193--206, June 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. N. Chen, G. Goel, and A. Wierman. Smoothed online convex optimization in high dimensions via online balanced descent. CoRR, abs/1803.10366, 2018.Google ScholarGoogle Scholar
  11. J. Friedman and N. Linial. On convex body chasing. Discrete & Computational Geometry, 9(3):293--321, Mar 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. G. Goel, N. Chen, and A. Wierman. Thinking fast and slow: Optimization decomposition across timescales. CoRR, abs/1704.07785, 2017.Google ScholarGoogle Scholar
  13. S. Guha and K. Munagala. Multi-armed bandits with metric switching costs. In International Colloquium on Automata, Languages, and Programming, pages 496--507. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. V. Joseph and G. de Veciana. Jointly optimizing multi-user rate adaptation for video transport over wireless systems: Mean-fairness-variability tradeo's. In IEEE INFOCOM, pages 567--575, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  15. S.-J. Kim and G. B. Giannakis. Real-time electricity pricing for demand response using online convex optimization. In IEEE Innovative Smart Grid Tech., pages 1--5, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  16. T. Kim, Y. Yue, S. Taylor, and I. Matthews. A decision tree framework for spatiotemporal sequence prediction. In ACM International Conference on Knowledge Discovery and Data Mining, pages 577--586, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. T. Koren, R. Livni, and Y. Mansour. Multi-armed bandits with metric movement costs. In Advances in Neural Information Processing Systems, pages 4122--4131, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Y. Li, G. Qu, and N. Li. Online optimization with predictions and switching costs: Fast algorithms and the fundamental limit. CoRR, abs/1801.07780, 2018.Google ScholarGoogle Scholar
  19. M. Lin, Z. Liu, A. Wierman, and L. L. Andrew. Online algorithms for geographical load balancing. In IEEE Green Computing Conference, pages 1--10, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Lin, A. Wierman, L. L. H. Andrew, and T. Eno. Dynamic right-sizing for power-proportional data centers. In IEEE INFOCOM, pages 1098--1106, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  21. T. Lu, M. Chen, and L. L. Andrew. Simple and effective dynamic provisioning for power-proportional data centers. IEEE Transactions on Parallel and Distributed Systems, 24(6):1161--1171, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. K. Pruhs. Errata. http://people.cs.pitt.edu/~kirk/Errata.html.Google ScholarGoogle Scholar
  23. H. Wang, J. Huang, X. Lin, and H. Mohsenian-Rad. Exploring smart grid and data center interactions for electric power load balancing. ACM SIGMETRICS Performance Evaluation Review, 41(3):89--94, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. F. Zanini, D. Atienza, L. Benini, and G. De Micheli. Multicore thermal management with model predictive control. In IEEE. European Conf. Circuit Theory and Design, pages 711--714, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  25. F. Zanini, D. Atienza, G. De Micheli, and S. P. Boyd. Online convex optimization-based algorithm for thermal management of MPSoCs. In The Great lakes symposium on VLSI, pages 203--208, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Smoothed Online Convex Optimization via Online Balanced Descent
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM SIGMETRICS Performance Evaluation Review
        ACM SIGMETRICS Performance Evaluation Review  Volume 46, Issue 2
        September 2018
        95 pages
        ISSN:0163-5999
        DOI:10.1145/3305218
        Issue’s Table of Contents

        Copyright © 2019 Author

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 17 January 2019

        Check for updates

        Qualifiers

        • research-article
      • Article Metrics

        • Downloads (Last 12 months)11
        • Downloads (Last 6 weeks)1

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader