skip to main content
10.1145/3308560.3316707acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Onto Model-based Anomalous Link Pattern Mining on Feature-Rich Social Interaction Networks

Published: 13 May 2019 Publication History

Abstract

The detection of anomalies and exceptional patterns in social interaction networks is a prominent research direction in data mining and network science. For anomaly detection, typically two questions need to be addressed and defined: (1) What is an anomaly? (2) How do we identify an anomaly? This paper discusses model-based approaches and methods for addressing and formalizing these issues in the context of feature-rich social interaction networks. It provides a categorization of model-based approaches and provides perspectives and first promising directions for its implementation.

References

[1]
L Akoglu, H Tong, and D Koutra. 2015. Graph Based Anomaly Detection and Description. Data Min. Knowl. Disc. 29, 3 (2015), 63.
[2]
Martin Atzmueller. 2014. Data Mining on Social Interaction Networks. Journal of Data Mining and Digital Humanities 1 (June 2014).
[3]
Martin Atzmueller. 2015. Subgroup Discovery. WIREs DMKD 5, 1 (2015), 35–49.
[4]
Martin Atzmueller. 2018. Compositional Subgroup Discovery on Attributed Social Interaction Networks. In Proc. International Conference on Discovery Science. Springer, Berlin/Heidelberg, Germany.
[5]
Martin Atzmueller, Joachim Baumeister, and Frank Puppe. 2006. Introspective Subgroup Analysis for Interactive Knowledge Refinement. In Proc. FLAIRS. AAAI Press, Palo Alto, CA, USA, 402–407.
[6]
Martin Atzmueller, Stephan Doerfel, and Folke Mitzlaff. 2016. Description-Oriented Community Detection using Exhaustive Subgroup Discovery. Information Sciences 329(2016), 965–984.
[7]
Martin Atzmueller, Tom Hanika, Gerd Stumme, Richard Schaller, and Bernd Ludwig. 2016. Social Event Network Analysis: Structure, Preferences, and Reality. In Proc. IEEE/ACM ASONAM. IEEE Press, Boston, MA, USA.
[8]
Martin Atzmueller, Benjamin Kloepper, Hassan Al Mawla, Benjamin Jäschke, Martin Hollender, Markus Graube, David Arnu, Andreas Schmidt, Sebastian Heinze, Lukas Schorer, Andreas Kroll, Gerd Stumme, and Leon Urbas. 2016. Big Data Analytics for Proactive Industrial Decision Support. atp edition 58, 9 (2016).
[9]
Martin Atzmueller and Florian Lemmerich. 2013. Exploratory Pattern Mining on Social Media using Geo-References and Social Tagging Information. International Journal of Web Science 2, 1/2 (2013).
[10]
Martin Atzmueller and Florian Lemmerich. 2018. Homophily at Academic Conferences. In Proc. WWW 2018 (Companion). IW3C2 / ACM.
[11]
Martin Atzmueller, Florian Lemmerich, Beate Krause, and Andreas Hotho. 2009. Who are the Spammers? Understandable Local Patterns for Concept Description. In Proc. 7th Conference on Computer Methods and Systems. Krakow, Poland.
[12]
Martin Atzmueller, Frank Puppe, and Hans-Peter Buscher. 2005. Profiling Examiners using Intelligent Subgroup Mining. In Proc. IDAMAP. Aberdeen, Scotland, 46–51.
[13]
Martin Atzmueller, Andreas Schmidt, Benjamin Kloepper, and David Arnu. 2017. HypGraphs: An Approach for Analysis and Assessment of Graph-Based and Sequential Hypotheses. In Postproc. NFMCP(LNAI), Vol. 10312.
[14]
Martin Atzmueller, Henry Soldano, Guillaume Santini, and Dominique Bouthinon. 2018. MinerLSD: Efficient Local Pattern Mining on Attributed Graphs. In Proc. 2018 IEEE International Conference on Data Mining Workshops (ICDMW).
[15]
Martin Atzmueller and Eric Sternberg. 2017. Mixed-Initiative Feature Engineering Using Knowledge Graphs. In Proc. K-CAP. ACM Press, New York, NY, USA.
[16]
Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard Cyganiak, and Sebastian Hellmann. 2009. DBpedia-A crystallization point for the Web of Data. Web Semantics 7, 3 (2009), 154–165.
[17]
Ronald S Burt. 1978. Cohesion Versus Structural Equivalence as a Basis for Network Subgroups. Sociological Methods & Research 7, 2 (1978), 189–212.
[18]
R S Burt. 1992. Structural Holes - The Social Structure of Competition. Harvard University Press, Cambridge, Massachusetts, USA.
[19]
Lukas Eberhard, Christoph Trattner, and Martin Atzmueller. 2018. Predicting Trading Interactions in an Online Marketplace through Location-Based and Online Social Networks. Information Retrieval Journal(2018).
[20]
William Eberle and Lawrence B. Holder. 2007. Anomaly Detection in Data Represented as Graphs. Intelligent Data Analysis 11, 6 (2007), 663–689.
[21]
Ove Frank. 1997. Composition and Structure of Social Networks. Mathématiques et sciences humaines. Mathematics and Social Sciences137(1997).
[22]
Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, and Jiawei Han. 2010. On Community Outliers and Their Efficient Detection in Information Networks. In Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD ’10). ACM, New York, NY, USA, 813–822.
[23]
M S Granovetter. 1973. The Strength of Weak Ties. The American Journal of Sociology 78, 6 (1973).
[24]
D Hawkins. 1980. Identification of Outliers. Chapman and Hall, London, UK.
[25]
Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum. 2013. YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence 194 (2013), 28–61.
[26]
Zan Huang, Xin Li, and Hsinchun Chen. 2005. Link Prediction Approach to Collaborative Filtering. In Proc. JCDL. ACM, New York, NY, USA, 141–142.
[27]
Roberto Interdonato, Martin Atzmueller, Sabrina Gaito, Rushed Kanawati, Christine Largeron, and Alessandra Sala. 2019. Feature-Rich Networks: Going Beyond Complex Network Topologies. Applied Network Science ((In Press) 2019).
[28]
Karin Knorr-Cetina. 1997. Sociality with Objects: Social Relations in Postsocial Knowledge Societies. Theory, Culture and Society 14, 4 (1997), 1–43.
[29]
Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. 2012. Subspace Clustering. WIREs: Data Mining and Knowledge Discovery 2, 4 (2012), 351–364.
[30]
Xin Li and Hsinchun Chen. 2009. Recommendation as Link Prediction: A Graph Kernel-based Machine Learning Approach. In Proc. JCDL. ACM, New York, NY, USA, 213–216.
[31]
David Liben-Nowell and Jon M. Kleinberg. 2003. The Link Prediction Problem for Social Networks. In Proc. CIKM. ACM, New York, NY, USA, 556–559.
[32]
L. Lü and T. Zhou. 2010. Link Prediction in Weighted Networks: The Role of Weak Ties. EPL (Europhysics Letters) 89 (2010), 18001.
[33]
Spyroula Masiala and Martin Atzmueller. 2018. First Perspectives on Explanation in Complex Network Analysis. In Proc. BNAIC. Jheronimus Academy of Data Science, Den Bosch, The Netherlands.
[34]
Spyroula Masiala and Martin Atzmueller. 2018. Towards Explainable Complex Network Analysis. In Proc. Dutch-Belgian Database Day. Hasselt University, Belgium.
[35]
Miller McPherson, Lynn Smith-Lovin, and James M. Cook. 2001. Birds of a Feather: Homophily in Social Networks. Ann. Rev. Sociology 27, 1 (2001), 415–444.
[36]
Folke Mitzlaff, Martin Atzmueller, Andreas Hotho, and Gerd Stumme. 2014. The Social Distributional Hypothesis. Journal of Social Network Analysis and Mining 4, 216 (2014), 1–14.
[37]
Folke Mitzlaff, Martin Atzmueller, Gerd Stumme, and Andreas Hotho. 2013. Semantics of User Interaction in Social Media. In Complex Networks IV. Studies in Computational Intelligence, Vol. 476. Springer, Heidelberg, Germany.
[38]
Emmanuel Müller, Matthias Schiffer, Patrick Gerwert, Matthias Hannen, Timm Jansen, and Thomas Seidl. 2010. SOREX: Subspace Outlier Ranking Exploration Toolkit. In Proc. ECML PKDD. Springer, Heidelberg, Germany, 607–610.
[39]
Caleb C. Noble and Diane J. Cook. 2003. Graph-Based Anomaly Detection. In Proc. ACM SIGKDD. ACM, New York, NY, USA, 631–636.
[40]
A. Papadimitriou, P. Symeonidis, and Y. Manolopoulos. 2011. Friendlink: Link Prediction in Social Networks via Bounded Local Path Traversal. In Proc. CASoN. IEEE, Fremont, CA, USA, 66–71.
[41]
Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic web 8, 3 (2017), 489–508.
[42]
Jay Pujara, Hui Miao, Lise Getoor, and William Cohen. 2013. Knowledge graph identification. In International Semantic Web Conference. Springer, 542–557.
[43]
Stephen Ranshous, Shitian Shen, Danai Koutra, Steve Harenberg, Christos Faloutsos, and Nagiza F. Samatova. 2015. Anomaly Detection in Dynamic Networks: A Survey. WIREs: Computational Stat. 7, 3 (2015), 223–247.
[44]
Matthew J Rattigan and David Jensen. 2005. The case for anomalous link discovery. Acm Sigkdd Explorations Newsletter 7, 2 (2005), 41–47.
[45]
Anna Sapienza, André Panisson, Joseph Wu, Laetitia Gauvin, and Ciro Cattuto. 2015. Anomaly Detection in Temporal Graph Data: An Iterative Tensor Decomposition and Masking Approach. In Proc. International Workshop on Advanced Analytics and Learning on Temporal Data(CEUR), Vol. 1425. CEUR-WS.org.
[46]
David Savage, Xiuzhen Zhang, Xinghuo Yu, Pauline Chou, and Qingmai Wang. 2014. Anomaly Detection in Online Social Networks. Social Networks 39(2014), 62–70.
[47]
Christoph Scholz, Martin Atzmueller, Alain Barrat, Ciro Cattuto, and Gerd Stumme. 2013. New Insights and Methods For Predicting Face-To-Face Contacts. In Proc. AAAI ICWSM. AAAI Press, Palo Alto, CA, USA.
[48]
Christoph Scholz, Jens Illig, Martin Atzmueller, and Gerd Stumme. 2014. On the Predictability of Talk Attendance at Academic Conferences. In Proc. 25th ACM Conference on Hypertext and Social Media. ACM Press, New York, NY, USA.
[49]
Thomas Seidl, Emmanuel Müller, Ira Assent, and Uwe Steinhausen. 2009. Outlier Detection and Ranking based on Subspace Clustering. In Uncertainty Management in Information Systems(Dagstuhl Seminar Proceedings), Christoph Koch, Birgitta König-Ries, Volker Markl, and Maurice van Keulen (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl, Germany.
[50]
Henry Soldano, Guillaume Santini, Dominique Bouthinon, and Emmanuel Lazega. 2017. Hub-Authority Cores and Attributed Directed Network Mining. In Proc. ICTAI. IEEE, Boston, MA, USA.
[51]
Chayant Tantipathananandh and Tanya Y. Berger-Wolf. 2009. Constant-Factor Approximation Algorithms for Identifying Dynamic Communities. In Proc. ACM SIGKDD (2009-07-02). ACM, New York, NY, USA, 827–836.
[52]
Lisa Thiele, Martin Atzmueller, Simone Kauffeld, and Gerd Stumme. 2014. Subjective versus Objective Captured Social Networks: Comparing Standard Self-Report Questionnaire Data with Observational RFID Technology Data. In Proc. Measuring Behavior. Wageningen, The Netherlands.
[53]
J Travers and S Milgram. 1969. An Experimental Study of the Small World Problem. Sociometry 32(1969), 425–443.
[54]
Dashun Wang, Dino Pedreschi, Chaoming Song, Fosca Giannotti, and Albert-László Barabási. 2011. Human Mobility, Social Ties, and Link Prediction. In Proc. ACM SIGKDD. ACM, New York, NY, USA, 1100–1108.
[55]
Stanley Wasserman and Katherine Faust. 1994. Social Network Analysis: Methods and Applications (1 ed.). Cambridge University Press, Cambridge, MA, USA.
[56]
Duncan J. Watts and Steven H. Strogatz. 1998. Collective Dynamics of ‘small-world’ Networks. Nature 393, 6684 (june 1998), 440–442.
[57]
Rose Yu, Xinran He, and Yan Liu. 2014. GLAD: Group Anomaly Detection in Social Media Analysis. In Proc. ACM SIGKDD. ACM, New York, NY, USA, 372–381.
[58]
Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. 2012. A Survey on Unsupervised Outlier Detection in High-Dimensional Numerical Data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5, 5(2012), 363–387.

Cited By

View all
  • (2024)DHyper: A Recurrent Dual Hypergraph Neural Network for Event Prediction in Temporal Knowledge GraphsACM Transactions on Information Systems10.1145/365301542:5(1-23)Online publication date: 29-Apr-2024
  • (2023)Exploratory and Explanation-Aware Network Intrusion Profiling using Subgroup Discovery and Complex Network AnalysisProceedings of the 2023 European Interdisciplinary Cybersecurity Conference10.1145/3590777.3590803(153-158)Online publication date: 14-Jun-2023
  • (2022)Explainability in Cyber Security using Complex Network Analysis: A Brief Methodological OverviewProceedings of the 2022 European Interdisciplinary Cybersecurity Conference10.1145/3528580.3532839(49-52)Online publication date: 15-Jun-2022
  • Show More Cited By

Index Terms

  1. Onto Model-based Anomalous Link Pattern Mining on Feature-Rich Social Interaction Networks
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      WWW '19: Companion Proceedings of The 2019 World Wide Web Conference
      May 2019
      1331 pages
      ISBN:9781450366755
      DOI:10.1145/3308560
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      In-Cooperation

      • IW3C2: International World Wide Web Conference Committee

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 13 May 2019

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. feature-rich networks
      2. mining social networks
      3. social interaction networks
      4. social media
      5. social network analysis

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Conference

      WWW '19
      WWW '19: The Web Conference
      May 13 - 17, 2019
      San Francisco, USA

      Acceptance Rates

      Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)4
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 28 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)DHyper: A Recurrent Dual Hypergraph Neural Network for Event Prediction in Temporal Knowledge GraphsACM Transactions on Information Systems10.1145/365301542:5(1-23)Online publication date: 29-Apr-2024
      • (2023)Exploratory and Explanation-Aware Network Intrusion Profiling using Subgroup Discovery and Complex Network AnalysisProceedings of the 2023 European Interdisciplinary Cybersecurity Conference10.1145/3590777.3590803(153-158)Online publication date: 14-Jun-2023
      • (2022)Explainability in Cyber Security using Complex Network Analysis: A Brief Methodological OverviewProceedings of the 2022 European Interdisciplinary Cybersecurity Conference10.1145/3528580.3532839(49-52)Online publication date: 15-Jun-2022
      • (2021)Many-Objective Optimization for Anomaly Detection on Multi-Layer Complex Interaction NetworksApplied Sciences10.3390/app1109400511:9(4005)Online publication date: 28-Apr-2021
      • (2021)DACHA: A Dual Graph Convolution Based Temporal Knowledge Graph Representation Learning Method Using Historical RelationACM Transactions on Knowledge Discovery from Data10.1145/347705116:3(1-18)Online publication date: 22-Oct-2021
      • (2020)Centrality-Based Anomaly Detection on Multi-Layer Networks Using Many-Objective Optimization2020 7th International Conference on Control, Decision and Information Technologies (CoDIT)10.1109/CoDIT49905.2020.9263819(633-638)Online publication date: 29-Jun-2020
      • (2019)MinerLSD: efficient mining of local patterns on attributed networksApplied Network Science10.1007/s41109-019-0155-y4:1Online publication date: 27-Jun-2019
      • (2019)Stratification-Oriented Analysis of Community Structure in Networks of Face-to-Face ProximityBehavioral Analytics in Social and Ubiquitous Environments10.1007/978-3-030-34407-8_2(28-43)Online publication date: 18-Nov-2019

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media