skip to main content
10.1145/3309129.3309135acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbraConference Proceedingsconference-collections
research-article

Investigation on Heat and Mass transfer in a Dialyzer Membrane Model for the Development of Dialysate Temperature Controller

Authors Info & Claims
Published:27 December 2018Publication History

ABSTRACT

During standard hemodialysis (HD), there is tendency for a rise in body temperature, which can possibly cause life-threatening complications. The analysis of thermal energy exchange in a dialyzer can be significant to provide constant body temperature, which can necessitate the development of an effective temperature controller. In this paper, the main aim is to evaluate the heat transfer that takes place in a dialyzer model during HD and a Polyflux 210H dialyzer membrane model was developed using COMSOL Multiphysics® software. The clearance rate of toxins was computed and validated for various blood flow rates. Then the heat transfer physics was added to investigate the effect of heat transfer taking place in the dialyzer. The clearance rates show significant improvement (<5% error) compared to previous published work (>11.7% error) and a strong agreement with the manufacturer's data. The model exhibited a trend in temperature profile across the dialyzer membrane and the blood temperature has decreased up to 1.15°C using cool dialysate settings. The dialyzer acts as a heat exchanger during HD. Our study reveals the temperature changes taking place in the dialyzer, which necessitates a system to control and regulate the dialysate temperature to compensate for this heat loss.

References

  1. Levey, A. S., Atkins, R., Coresh, J., Cohen, E. P., Collins, A. J., Eckardt, K. U., Nahas, M. E., Jaber, B. L., Jadoul, M., Levin, A., Powe, N. R., Rossert, J., Wheeler, D. C., Lameire, N., and Eknoyan, G. Chronic kidney disease as a global public health problem: Approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes, Kidney Int., vol. 72, no. 3, pp. 247--259, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  2. Jha, V., Garcia-Garcia, G., Iseki, K., Li, Z., Naicker, S., Plattner, B., Saran, R., Wang, A. Y. M., and Yang, C. W. Chronic kidney disease: global dimension and perspectives, Lancet, vol. 382, no. 9888, pp. 260--272, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  3. White, S. L., Chadban, S. J., Jan, S., Chapman, J. R., and Cass, A. How can we achieve global equity in provision of renal replacement therapy? Bull. World Health Organ., vol. 86, no. 3, pp. 229--237, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  4. Pergola, P. E., Habiba, N. M., and Johnson, J. M. Body temperature regulation during hemodialysis in long-term patients: Is it time to change dialysate temperature prescription? Am. J. Kidney Dis., vol. 44, no. 1, pp. 155--165, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  5. Usvyat, L. A., Raimann, J. G., Carter, M., Van Der Sande, F. M., Kooman, J. P., Kotanko, P., and Levin, N. W. Relation between trends in body temperature and outcome in incident hemodialysis patients, Nephrol. Dial. Transplant., vol. 27, no. 8, pp. 3255--3263, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  6. Maggiore, Q., Pizzarelli, F., Sisca, S., Zoccali, C., Parlongo, S., Nicolo, F., and Creazzo, G. Blood Temperature and Vascular Stability during Hemodialysis and Hemofiltration, Trans. Am. Soc. Artif. Intern. Organs, vol. 28, no. 1, pp. 523--527, 1982.Google ScholarGoogle Scholar
  7. Korkor, A. B., Bretzmann, C. M., and Eastwood, D. Effect of dialysate temperature on intradialytic hypotension, Dial. Transplant., vol. 39, no. 9, pp. 377--385, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chesterton, L. J., Selby, N. M., Burton, J. O., and McIntyre, C. W. Cool dialysate reduces asymptomatic intradialytic hypotension and increases baroreflex variability, Hemodial. Int., vol. 13, no. 2, pp. 189--196, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  9. Van Der Sande, F. M., Wystrychowski, G., Kooman, J. P., Rosales, L., Raimann, J., Kotanko, P., Carter, M., Chan, C. T., Leunissen, K. M. L., and Levin, N. W. Control of core temperature and blood pressure stability during hemodialysis, Clin. J. Am. Soc. Nephrol., vol. 4, no. 1, pp. 93--98, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  10. Li, W., Sun, S., Zhao, G., Gao, D., and Ding, W. Simulation of velocity and concentration fields in artificial kidneys, in ASME 2013 Summer Bioengineering Conference SBC2013, 2016, pp. 2--3.Google ScholarGoogle Scholar
  11. Donato, D., Boschetti-de-Fierro, A., Zweigart, C., Kolb, M., Eloot, S., Storr, M., Krause, B., Leypoldt, K., and Segers, P. Optimization of dialyzer design to maximize solute removal with a two-dimensional transport model, J. Memb. Sci., vol. 541, pp. 519--528, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  12. Fukuda, M., Namekawa, K., and Sakai, K. Identical dependence of dialysate-side mass transfer coefficient on reynolds number using dimensionless correlation based on the mass transfer model in newly developed dialyzers and a downsized dialyzer, Adv. Biomed. Eng., vol. 5, pp. 118--123, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  13. Islam, M. S. and Szpunar, J. Study of dialyzer membrane ( Polyflux 210H ) and effects of different parameters on dialysis performance, Open J. Nephrol., vol. 3, no. 3, pp. 161--167, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  14. Saliba, J., Charara, J., and Hassan, M. H. Nanostructured porous silicon membrane for hemodialysis, in 2nd International Conference on Advances in Biomedical Engineering, 2013, pp. 145--147.Google ScholarGoogle ScholarCross RefCross Ref
  15. Eloot, S., D'Asseler, Y., De Bondt, P., and Verdonck, P. Combining SPECT medical imaging and computational fluid dynamics for analyzing blood and dialysate flow in hemodialyzers., Int. J. Artif. Organs, vol. 28, no. 7, pp. 739--749, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  16. Ding, W., Li, W., Sun, S., Zhou, X., Hardy, P. A., Ahmad, S., and Gao, D. Three-dimensional simulation of mass transfer in artificial kidneys, Artif. Organs, vol. 39, no. 6, pp. E79-E89, Jun. 2015.Google ScholarGoogle ScholarCross RefCross Ref
  17. Jabbar, M. H. A., Anandan Shanmugam, S., and Khiew, P. S. Design and implementation of dialysate temperature control system for hemodialysis: a pilot study, in Intelligent Embedded Systems, 2018, pp. 1--10.Google ScholarGoogle Scholar
  18. Hedayat, A., Szpunar, J., Kumar, N. A. P. K., Peace, R., Elmoselhi, H., and Shoker, A. Morphological characterization of the Polyflux 210H hemodialysis filter pores, Int. J. Nephrol., vol. 2012, pp. 1--6, 2012.Google ScholarGoogle Scholar
  19. Gambro, PolyfluxTM 210H, 2012.Google ScholarGoogle Scholar
  20. Hedayat, A. and Shoker, A. Polyflux ® 210H hemodialysis membrane targets to improve filtration, Saudi J. Kidney Dis. Transplant., vol. 25, no. 1, pp. 156--160, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  21. Millington, R. J. and Quirk, J. P. Permeability of porous solids, Trans. Faraday Soc., vol. 57, no. 0, pp. 1200--1207, 1961.Google ScholarGoogle ScholarCross RefCross Ref
  22. Powell, P. and Ingen Housz, A. J. Engineering with Polymers, 2nd Edition. 1998.Google ScholarGoogle Scholar
  23. Maryanne, L., Poladian, L., Barton, G., and van Eijkelenborg, M. A. Microstructured Polymer Optical Fibres. 2008.Google ScholarGoogle Scholar
  24. Hussein, T. A. and Malik, A. S. Effect of dialysate temperature on hemodynamic stability among hemodialysis patients among hemodialysis patients, Iraqi J. Med. Sci., vol. 12, no. 2, pp. 173--179, 2014.Google ScholarGoogle Scholar
  25. Kim, Y. O., Song, W. J., Yoon, S. A., Shin, M. J., Song, H. C., Kim, Y. S., Kim, S., Chang, Y. S., and Bang, B. K. The effect of increasing blood flow rate on dialysis adequacy in hemodialysis patients with low Kt/V, Hemodial. Int., vol. 8, no. 1, p. 85, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  26. Schneditz, D. Temperature and thermal balance in hemodialysis., Semin. Dial., vol. 14, no. 5, pp. 357--64, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  27. De Capua, C., Fabbiano, L., Morello, R., and Vacca, G. Optimized procedure to evaluate the thermal energy transfer in hemodialysis treatment, Instrum. Sci. Technol., vol. 42, no. 4, pp. 458--468, Jul. 2014.Google ScholarGoogle ScholarCross RefCross Ref
  28. Schneditz, D., Ronco, C., and Levin, N. Temperature control by the blood temperature monitor, Semin. Dial., vol. 16, no. 6, pp. 477--482, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  29. Locatelli, F., Buoncristiani, U., Canaud, B., Khler, H., Petitclerc, T., and Zucchelli, P. Haemodialysis with on-line monitoring equipment: Tools or toys? Nephrol. Dial. Transplant., vol. 20, no. 1, pp. 22--33, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  30. Maggiore, Q., Pizzarelli, F., Santoro, A., Panzetta, G., Bonforte, G., Hannedouche, T., De Lara, M. A. A., Tsouras, I., Loureiro, A., Ponce, P., Sulkovà, S., Van Roost, G., Brink, H., and Kwan, J. T. C. The effects of control of thermal balance on vascular stability in hemodialysis patients: Results of the European randomized clinical trial, Am. J. Kidney Dis., vol. 40, no. 2, pp. 280--290, 2002.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Investigation on Heat and Mass transfer in a Dialyzer Membrane Model for the Development of Dialysate Temperature Controller

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ICBRA '18: Proceedings of the 5th International Conference on Bioinformatics Research and Applications
        December 2018
        111 pages
        ISBN:9781450366113
        DOI:10.1145/3309129

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 December 2018

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited
      • Article Metrics

        • Downloads (Last 12 months)3
        • Downloads (Last 6 weeks)0

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader