
Load Balancing Guardrails: Keeping Your Heavy Traffic on the
Road to Low Response Times

Isaac Grosof
Carnegie Mellon University

Computer Science Department
Pittsburgh, PA, USA
igrosof@cs.cmu.edu

Ziv Scully
Carnegie Mellon University

Computer Science Department
Pittsburgh, PA, USA
zscully@cs.cmu.edu

Mor Harchol-Balter
Carnegie Mellon University

Computer Science Department
Pittsburgh, PA, USA
harchol@cs.cmu.edu

ABSTRACT
Load balancing systems, comprising a central dispatcher and a
scheduling policy at each server, are widely used in practice, and
their response time has been extensively studied in the theoret-
ical literature. While much is known about the scenario where
the scheduling at the servers is First-Come-First-Served (FCFS), to
minimize mean response time we must use Shortest-Remaining-
Processing-Time (SRPT) scheduling at the servers. Much less is
known about dispatching polices when SRPT scheduling is used.
Unfortunately, traditional dispatching policies that are used in prac-
tice in systems with FCFS servers often have poor performance
in systems with SRPT servers. In this paper, we devise a simple
fix that can be applied to any dispatching policy. This fix, called
guardrails, ensures that the dispatching policy yields optimal mean
response time under heavy traffic when used in a system with SRPT
servers. Any dispatching policy, when augmented with guardrails,
becomes heavy-traffic optimal. Our results yield the first analytical
bounds on mean response time for load balancing systems with
SRPT scheduling at the servers.

CCS CONCEPTS
• General and reference → Performance; • Mathematics of
computing→Queueing theory; •Networks→Network per-
formance modeling; • Theory of computation→ Routing and
network design problems; • Computing methodologies→ Model
development and analysis; • Software and its engineering →
Scheduling;

KEYWORDS
load balancing; dispatching; scheduling; queueing; SRPT; response
time; latency; sojourn time; heavy traffic

ACM Reference Format:
Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2019. Load Balancing
Guardrails: Keeping Your Heavy Traffic on the Road to Low Response
Times. In ACM SIGMETRICS / International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’19 Abstracts), June 24–28, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3309697.3331514

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMETRICS ’19 Abstracts, June 24–28, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6678-6/19/06.
https://doi.org/10.1145/3309697.3331514

Figure 1: Two decision points within a load balancing sys-
tem: (1) Pick the dispatching policy. (2) Pick the scheduling
policy for the servers.

1 INTRODUCTION
Load balancers are ubiquitous throughout computer systems. They
act as a front-end to web server farms, distributing HTTP requests
to different servers. They likewise act as a front-end to data centers
and cloud computing pools, where they distribute requests among
servers and virtual machines.

In our paper [1], we consider the immediate dispatch load bal-
ancing model, where each arriving job is immediately dispatched
to a server, as shown in Figure 1. Our goal is to find the optimal
load balancing policy for this system. The system has two decision
points:

(1) A dispatching policy decides how to distribute jobs across
the servers.

(2) A scheduling policy at each server decides which job to serve
among those at that server.

We ask:
What (1) dispatching policy and (2) scheduling policy
should we use tominimize mean response time of jobs?

We assume that the job arrival process is Poisson and that job
sizes are i.i.d. from a general size distribution. We assume jobs are
preemptible with no loss of work. Finally, we assume that job sizes
are known at the time the job arrives in the system.

With these assumptions, the scheduling question turns out to be
easy to answer: use Shortest-Remaining-Processing-Time (SRPT) at
the servers. No matter what dispatching decisions are made, if we
consider the sequence of jobs dispatched to a particular server, the
policy which minimizes mean response time for that server must
be to schedule those jobs in SRPT order. Thus, we assume SRPT is
used at the servers.

Session 2A: Load Balancing and Multiserver Systems SIGMETRICS’19 Abstracts, June 24–28, 2019, Phoenix, AZ, USA

9

https://doi.org/10.1145/3309697.3331514
https://doi.org/10.1145/3309697.3331514
https://doi.org/10.1145/3309697.3331514
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3309697.3331514&domain=pdf&date_stamp=2019-06-20


0.0 0.2 0.4 0.6 0.8 1.0

System load (ρ)

0

100

200

300

400

500

M
ea

n
re

sp
on

se
tim

e
(E

[T
]) Random/FCFS

LWL/FCFS
LWL/SRPT
Random/SRPT

Figure 2: Two dispatching policies: Random and LWL. Two
scheduling policies: FCFS and SRPT. FCFS scheduling at the
servers yields higher mean response time as a function of
load, compared with SRPT scheduling at the servers. Ran-
domdispatching is worse than LWL dispatching under FCFS
scheduling at the servers, but Random dispatching is better
than LWLdispatching under SRPT scheduling at the servers.
Simulation uses k = 10 servers. Size distribution shown is Bi-
modal: 99.95% size 1 jobs and 0.05% size 1000 jobs.

The question remains: What dispatching policy minimizes mean
response time given SRPT service at the servers? While many dis-
patching policies have been considered in the literature, they have
mostly been considered in the context of First-Come-First-Served
(FCFS) or Processor-Sharing (PS) scheduling at the servers. Popu-
lar dispatching policies include Random, Least-Work-Left (LWL),
Join-Shortest-Queue (JSQ), JSQ-d , Size-Interval-Task-Assignment
(SITA), Round-Robin (RR), and many more. However, only the sim-
plest of these policies have been studied for SRPT servers.

One might hope that the same policies that yield low mean re-
sponse time when servers use FCFS scheduling would also perform
well when servers use SRPT scheduling. Unfortunately, this does
not always hold. For example, when the servers use FCFS, LWL
dispatching, which sends each job to the server with the least re-
maining work, outperforms Random dispatching. However, the
opposite can happen when the servers use SRPT: as shown in Fig-
ure 2, Random/SRPT can outperform LWL/SRPT, and can do so
by a factor of 5 or more under heavy load. This means that LWL
is making serious mistakes. The heuristics that served us well for
FCFS servers can steer us awry when we use SRPT servers.

We introduce guardrails, a new technique for creating dispatch-
ing policies. Guardrails view jobs as being classified into small jobs,
medium-sized jobs, etc. Guardrails require the dispatcher to send
a similar amount of work comprising small jobs to each server;
likewise similar amounts of work of medium-sized jobs should be
sent to each sever, and so forth. Our paper [1] precisely defines
guardrails.

Given an arbitrary dispatching policy P, we can restrict P by
disallowing any dispatch that would violate the guardrail require-
ment. Doing so results in an improved policy Guarded-P (G-P). We
prove that G-P has asymptotically optimal mean response time in
the heavy traffic limit, no matter what the initial policy P is. We
also show empirically that adding guardrails to a policy almost

0.0 0.2 0.4 0.6 0.8 1.0

System load (ρ)

0

20

40

60

80

100

M
ea

n
re

sp
on

se
tim

e
(E

[T
]) LWL/SRPT

Random/SRPT
G-Random/SRPT
G-LWL/SRPT

Figure 3: Adding guardrails to LWL yieldsmuch lowermean
response time as a function of load. Guardrails yield a factor
of 3 improvement even at ρ = 0.8, and a factor of 7 improve-
ment at ρ = 0.9. Adding guardrails to Random also yields
significantly lowermean response time as a function of load.
Simulation uses k = 10 servers. Size distribution shown is Bi-
modal: 99.95% size 1 jobs and 0.05% size 1000 jobs.

always decreases its mean response time (and never significantly
increases it), even outside the heavy-traffic regime.

As an example of the power of guardrails, Figure 3 shows the per-
formance of guarded versions of LWL and Random. The guardrails
stop LWL from making serious mistakes and dramatically improve
its performance. Random dispatching also benefits from guardrails.
Moreover, the guarded policies have a theoretical guarantee: In
the limit as load ρ → 1, G-Random/SRPT and G-LWL/SRPT con-
verge to the optimal mean response time. In contrast, unguarded
Random/SRPT is a factor of k worse than optimal in the ρ → 1
limit, where k is the number of servers.

Our paper [1] makes the following contributions:
• We introduce guardrails, a technique for improving any dis-
patching policy.

• We bound the mean response time of any guarded dispatch-
ing policy when paired with SRPT scheduling at the servers.
Using that bound, we prove that any guarded policy has
asymptotically optimal mean response time as load ρ → 1,
subject to a technical condition on the job size distribution.

• We empirically show that guardrails improve a wide variety
of common dispatching policies of these at all loads.

• Wediscuss practical considerations and extensions of guardrails:
– guardrails for large systems, which may have multiple
dispatchers and network delays;

– guardrails for scheduling policies other than SRPT; and
– guardrails for heterogeneous servers.

ACKNOWLEDGMENTS
This research was supported by NSF-XPS-1629444, NSF-CSR-180341, and a 2018 Faculty
Award from Microsoft. Additionally, Ziv Scully was supported by an ARCS Foundation
scholarship and the NSF GRFP under Grant Nos. DGE-1745016 and DGE-125222.

REFERENCES
[1] Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2019. Load Balancing Guardrails:

Keeping Your Heavy Traffic on the Road to Low Response Times. Proc. ACM Meas.
Anal. Comput. Syst. 3, 2, Article 42 (June 2019), 31 pages. https://doi.org/10.1145/
3326157

Session 2A: Load Balancing and Multiserver Systems SIGMETRICS’19 Abstracts, June 24–28, 2019, Phoenix, AZ, USA

10

https://doi.org/10.1145/3326157
https://doi.org/10.1145/3326157

	Abstract
	1 Introduction
	Acknowledgments
	References



