skip to main content
10.1145/3317326.3317333acmotherconferencesArticle/Chapter ViewAbstractPublication Pagesergo-iaConference Proceedingsconference-collections
research-article

Real-time and multi-factor determination of mental workload for the aircraft certification process

Published: 03 October 2018 Publication History

Abstract

Certifying cockpit systems is a long and costly process, with much emphasis on the negotiations between industry and authority's representatives. Also, a recent trend has resulted in a split between conventional and human factor scenarios approaches. As such, Human-machine Interface certification is performed rather late in the process and still relies on well-known and accepted methodologies, such as NASA-TLX tool for assessing workload. Conversely, ground truth for mental workload evaluation in aeronautics remains subjective values obtained from very limited expert pilot panels. On the other hand, other methodologies such as dual tasks and physiologic measures have been developed in labs for decades and used in simulated or real flights, but with a somewhat limited perceived added value by both industry and States experts. This article aims at discussing this conundrum through a recent example. It will present the rationale for the development of a physiologic approach based on realistic scenarios in aircraft simulators, and machine learning tools to implement a real-time complementary approach for mental workload measurement, which could help the certification process. The perceived need for pilot real-time behavior modeling and some elements of trust and acceptability will be discussed.

References

[1]
ICAO. (2016). Annex 8 Airworthiness of Aircraft.
[2]
ICAO. (2014). Airworthiness Manual, Part V State of Design and State of Manufacture.
[3]
Leplat, J. (2002). Eléments pour une histoire de la notion de charge mentale. In M. Jourdan, & J. Theureau, Charge mentale : notion floue et vrai probléme, (pp. 27--40). Toulouse : Octarès.
[4]
Young, M. S., Brookhuis, K. A., Wickens, C. D., & Hancock, P. A. (2015). State of science: mental workload in ergonomics. Ergonomics, 58(1), 1--17.
[5]
Cain, B. (2007). A Review of the Mental Workload Literature. Defence, Research and Development, Canada, Toronto, Juillet.
[6]
Chanquoy, L., Tricot, A., & Sweller, J. (2007). Qu'est-ce que la charge cognitive? In L. Chanquoy, A. Tricot, & J. Sweller (Eds), La charge cognitive, Théorie et applications (pp. 11--32). Paris : Armand Colin.
[7]
Burian, B. K., Pruchnicki, S., Rogers, J., Christopher, B., Williams, K., Silverman, E., ... & Runnels, B. (2013). Single-pilot workload management in entry-level jets (No. DOT-FAA-AM-13-17). Moffett Field : National Aeronautics and Space Administration, AMES Research Center.
[8]
P. Falzon, & C. Sauvagnac (2004). Charge de travail et stress. In Ergonomie (pp. 175--190). Presses Universitaires de France.
[9]
De Waard, D. (1996). The measurement of drivers' mental workload. Netherlands: Groningen University, Traffic Research Center.
[10]
Casner, S. M., & Gore, B. F. (2010). Measuring and evaluating workload: A primer. (NASA/TM 2010-1850). Washington, D.C.: National Aeronautics and Space Administration.
[11]
Stanton, N., Salmon, P. M., & Rafferty, L. A, Baber, C., Walker, G.H., & Jenkins, D.P. (2013). Human factors methods: a practical guide for engineering and design. Ashgate Publishing, Ltd.
[12]
Chin, E., Nathan, F., Pauzie, A., Manzano, J., Nodari, E., Cherri, C., ... & Marchitto, M. (2004). Subjective Assessment Methods for Workload. AIDE Deliverable, 2(6).
[13]
Castor, M.C. (2003). GARTEUR Handbook of mental workload measurement, GARTEUR, Group for Aeronautical Research and Technology in Europe, Flight Mechanics Action Group FM AG13: 164.
[14]
Muckler, F. A., & Seven, S. A. (1992). Selecting performance measures:" Objective" versus" subjective" measurement. Human Factors: The Journal of the Human Factors and Ergonomics Society, 34(4), 441--455.
[15]
Rubio, S., Díaz, E., Martín, J., & Puente, J. M. (2004). Evaluation of subjective mental workload: A comparison of SWAT, NASA-TLX, and workload profile methods. Applied Psychology, 53(1), 61--86.
[16]
Wierwille, W. W., & Eggemeier, F. T. (1993). Recommendations for mental workload measurement in a test and evaluation environment. Human Factors: The Journal of the Human Factors and Ergonomics Society, 35(2), 263--281.
[17]
Sperandio, J. C. (1977). La régulation des modes opératoires en fonction de la charge de travail chez les contrôleurs de trafic aérien. Le Travail Humain, 249--256.
[18]
Sebok, A. (2000). Team performance in process control : influences of interface design and staffing levels. Ergonomics, 43 (8), 1210--1236.
[19]
Raufaste, E., Daurat A., Melan, C. & Ribert-Van De Weerdt, C. (2004) « Aspects intensifs de la cognition en situation de travail ». In J.-M. Hoc & F. Darses (Eds.), Psychologie ergonomique : tendances actuelles, (pp. 175--199), Paris: Presses Universitaires de France.
[20]
Durantin, G., Gagnon, J. F., Tremblay, S., & Dehais, F. (2014). Using near infrared spectroscopy and heart rate variability to detect mental overload. Behavioural brain research, 259, 16--23.
[21]
Matthews, G., Reinerman-Jones, L. E., Barber, D. J., & Abich, J., IV. (2015). The psychometrics of mental workload: Multiple measures are sensitive but divergent. Human Factors, 57, 125--143.
[22]
Luximon, A., & Goonetilleke, R. S. (2001). Simplified subjective workload assessment technique. Ergonomics, 44(3), 229--243.
[23]
Besson, P., Bourdin, C., Bringoux, L., Dousset, E., Maïano, C., Marqueste, T., Mestre, D.R., Gaetan, S., Baudry, J-P., & Vercher, J. L. (2013). Effectiveness of physiological and psychological features to estimate helicopter pilots' workload: A Bayesian network approach. IEEE Transactions on Intelligent Transportation Systems, 14(4), 1872--1881.
[24]
Stanton, N.A. (2006). Hierarchical task analysis: Developments, applications, and extensions. Applied Ergonomics, 37, 55--79.
[25]
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in Psychology, 52, 139--183.
[26]
Byers, J. C., Bittner, A. C. J., & Hill, S. G. (1989). Traditional and raw Task Load Index (TLX) correlations: Are paired comparisons necessary? In A. Mital (Ed.), Advances in industrial ergonomics and safety I (pp. 481--485). London: Taylor & Francis.
[27]
Vermersch, P. (2006). L'entretien d'explicitation (5e édition). Issy-les-Moulineaux: ESF Editeur.
[28]
Grandner MA; Kripke DF; Yoon IY; & Youngstedt SD (2006). Criterion validity of the Pittsburgh Sleep Quality Index: Investigation in a non-clinical sample. Sleep and biological rhythms. 4 (2): 129--139. PMC 3399671 Freely accessible. PMID 22822303.
[29]
McNair, D. M., Lorr, M., & Droppelman, L. F. (1971). EITS manual for the Profile of Mood States. San Diego, CA: Educational and Industrial Testing Service.
[30]
Spielberger, C. D., Gorsuch, R. L., Lushene, R. E., Vagg, P. R., & Jacob, G. A. (1983). Manual for the State-Trait-Anxiety Inventory STAI-forme Y. Palo Alto: Consulting Psychologists Press Inc, 36 p.
[31]
Endler, N. S., & Parker, J. D. A. (1990). "Multidimensional Assessment of Coping: A Critical Evaluation." Journal of Personality and Social Psychology, 58(5), 844--854.
[32]
Rolland, J-P. (1998). Manuel du CISS. Adaptation française de l'inventaire de coping pour situations stressantes de N. S. Endler et J. D. A. Parker. Paris : Les Éditions du Centre de Psychologie appliquée.
[33]
Schwartz, C. E., & Daltroy, L. H. (1991) Measuring coping flexibility: Development of the Flex measure. Poster presented at the annual meeting of the Society of Behavioral Medicine, San Francisco.
[34]
Mostul, B. (1977). Measurement of Ambiguity Tolerance (MAT-50): Further Construct Validation, Dissertations and Theses. Paper 2514.https://pdxscholar.library.pdx.edu/open_access_etds/251410.15760/etd.2511
[35]
Bargiotas I, Nicolai A, Vidal P-P, Labourdette C, Vayatis N, & Buffat S (2018) The complementary role of activity context in the workload evaluation of helicopter pilots: A multi-tasking learning approach. H-Workload Conference, Amsterdam.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
Ergo'IA '18: Proceedings of the 16th Ergo'IA “Ergonomie Et Informatique Avancée” Conference
October 2018
139 pages
ISBN:9781450364881
DOI:10.1145/3317326
© 2018 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 October 2018

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

ErgoIA '18

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 51
    Total Downloads
  • Downloads (Last 12 months)9
  • Downloads (Last 6 weeks)3
Reflects downloads up to 14 Feb 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media