skip to main content
10.1145/3319619.3326809acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Can clustering improve glucose forecasting with genetic programming models?

Published:13 July 2019Publication History

ABSTRACT

This study investigates how to improve the predictions of glucose values obtained with genetic programming models. A set of statistical techniques are used to discover glucose profiles that identify similar situations in patients with type 1 diabetes mellitus, and incorporate this knowledge to the models. Glucose time series are divided into 4-hour non-overlapping slots and clustered using the technique based on decision trees called chi-square automatic interaction detection, to classify glucose profiles into groups using two decision variables: day of the week and time slot of the day. The objective is to customize models for different glucose profiles that appear in the patient's day-to-day. Genetic programming models created with glucose values from the original data-set are compared to those of models created with classified glucose values. Significant differences (p-value < 0.05) and associations are observed between the glucose profiles. In general, using classified glucose values in models created with genetic programming, the accuracy of the predictions improves in comparison with those of models created with the original data-set. We concluded that the classification process can be useful to correct and improve habits or clinical therapies in patients, and obtain more accurate models through automatic learning techniques and artificial intelligence.

References

  1. Hirotogu Akaike. 1998. Information Theory and an Extension of the Maximum Likelihood Principle. Springer New York, New York, NY, 199--213.Google ScholarGoogle Scholar
  2. American Diabetes Association. 2016. Intensive Diabetes Treatment and Cardiovascular Outcomes in Type 1 Diabetes: The DCCT/EDIC Study 30-Year Follow-up. Diabetes Care (2016).Google ScholarGoogle Scholar
  3. Carlos Cervigon, J. Ignacio Hidalgo, Marta Botella, and Rafael-J Villanueva. 2017. A genetic algorithm approach to customizing a glucose model based on usual therapeutic parameters. Progress in Artificial Intelligence 6, 3 (2017), 255--261.Google ScholarGoogle ScholarCross RefCross Ref
  4. W. Clarke, D. Cox, L. Gonder-Frederick, W. Carter, and S. Pohl. 1987. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 10, 5 (1987), 622--628.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Hurvich Clifford and Chih Ling Tsai. 1989. Regression and time series model selection in small samples. Biometrika 76, 2 (1989), 297--307.Google ScholarGoogle ScholarCross RefCross Ref
  6. Ivanoe De Falco, Antonio Delia Cioppa, Tomas Koutny, Michal Krcma, Um-berto Scafuri, and Ernesto Tarantino. 2018. Genetic Programming-based induction of a glucose-dynamics model for telemedicine. Journal of Network and Computer Applications 119 (2018), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. OrganizaciÃČÂŞn Mundial de la Salud. 2016. Informe Mundial Sobre la Diabetes. World Health Organization 2016 (2016).Google ScholarGoogle Scholar
  8. Ya-Xiong Tao (Eds.). 2014. Glucose Homeostatis and the Pathogenesis of Diabetes Mellitus (1 ed.). Academic Press.Google ScholarGoogle Scholar
  9. F.H. El-Khatib, S.J. Russell, D.M. Nathan, R.G. Sutherlin, and E.R. Damiano. 2010. A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci Transl Med. 2 (27) (2010).Google ScholarGoogle Scholar
  10. J. Ignacio Hidalgo, Esther Maqueda, Jose L. Risco-Martan, Alfredo Cuesta-Infante, J. Manuel Colmenar, and Javier Nobel. 2014. glUCModel: A monitoring and modeling system for chronic diseases applied to diabetes. Journal of Biomedical Informatics 48 (2014), 183 -- 192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jose Ignacio Hidalgo, Jose Manuel Velasco, Juan Lanchares, Sergio Contador, and Oscar Garnica. 2018. An analysis of solutions based on Genetic Programming to solve problems of symbolic regression of data from continuous glucose monitoring.XVIII Conferencia AEPIA (2018), 764--771. https://sci2s.ugr.es/caepia18/proceedings/proceedings.phpGoogle ScholarGoogle Scholar
  12. Roman Hovorka, Janet M Allen, Daniela Elleri, Ludovic J Chassin, Julie Harris, Dongyuan Xing, Craig Kollman, Tomas Hovorka, Anne Mette F Larsen, Mari-anna Nodale, Alessandra De Palma, Malgorzata E Wilinska, Carlo L Acerini, and David B Dunger. 2010. Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. The Lancet 375 (2010), 743 -- 751.Google ScholarGoogle ScholarCross RefCross Ref
  13. George Kaplan, Debbie E Goldberg, Susan Everson-Rose, Richard D Cohen, Riitta Salonen, Jaakko Tuomilehto, and Jukka Salonen. 1996. Perceived Health Status and Morbidity and Mortality: Evidence from the Kuopio Ischaemic Heart Disease Risk Factor Study. 25 (05 1996).Google ScholarGoogle Scholar
  14. G. V. Kass. 1980. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Journal of the Royal Statistical Society. Series C (Applied Statistics) 29, 2 (1980), 119--127. http://www.jstor.org/stable/2986296Google ScholarGoogle ScholarCross RefCross Ref
  15. Christina-Maria Kastorini, George Papadakis, Haralampos J. Milionis, Kallirroi Kalantzi, Paolo-Emilio Puddu, Vassilios Nikolaou, Konstantinos N. Vemmos, John A. Goudevenos, and Demosthenes B. Panagiotakos. 2013. Comparative analysis of a-priori and a-posteriori dietary patterns using state-of-the-art classification algorithms: A case/case-control study. Artificial Intelligence in Medicine 59, 3 (2013), 175 -- 183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Maarten Keijzer. 2003. Improving Symbolic Regression with Interval Arithmetic and Linear Scaling. (2003), 70--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. B. Kovatchev, C. Cobelli, E. Renard, S. Anderson, M. Breton, S. Patek, W. Clarke, D. Bruttomesso, A. Maran, S. Costa, A. Avogaro, C. Dalla Man, A. Facchinetti, L. Magni, G. De Nicolao, J. Place, and A. Farret. 2010. Multinational study of subcutaneous model-predictive closed loop control in type 1 diabetes mellitus: Summary of the results. Diabetes Sci Technol 4 (2010), 1374--1381.Google ScholarGoogle ScholarCross RefCross Ref
  18. John R. Koza. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Sean Luke. 2000. Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evolutionary Computation 4 (2000), 274--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lalo Magni, Marco Forgione, Chiara Toffanin, Chiara Dalla Man, Boris Kovatchev, Giuseppe De Nicolao, and Claudio Cobelli. 2009. Run-to-Run Tuning of Model Predictive Control for Type 1 Diabetes Subjects: In Silico Trial. Journal of Diabetes Science and Technology 3, 5 (2009), 1091--1098.Google ScholarGoogle ScholarCross RefCross Ref
  21. Lucy Mays. 2015. Diabetes Mellitus Standards of Care. Nursing Clinics of North America 50, 4 (2015), 703 -- 711. Pathophysiology and Care Protocols for Nursing Management.Google ScholarGoogle ScholarCross RefCross Ref
  22. Mirko Messori, Chiara Toffanin, Simone Del Favero, Giuseppe De Nicolao, Claudio Cobelli, and Lalo Magni. 2016. Model individualization for artificial pancreas. Computer Methods and Programs in Biomedicine (2016), -.Google ScholarGoogle Scholar
  23. J. L. Parkes, S. L. Slatin, S. Pardo, and B. H. Ginsberg. 2000. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care 23, 8 (2000), 1143--1148. arXiv:http://care.diabetesjournals.org/content/23/8/1143.full.pdfGoogle ScholarGoogle ScholarCross RefCross Ref
  24. Andreas Pfützne, David C. Klonoff, Scott Pardo, and Joan L. Parkes. 2013. Technical Aspects of the Parkes Error Grid. Journal of Diabetes Science and Technology 7, 5 (2013), 1275--1281. PMID: 24124954.Google ScholarGoogle ScholarCross RefCross Ref
  25. Thierry Prud'Homme, Alain Bock, Gregory Francois, and Denis Gillet. 2011. Preclinically assessed optimal control of postprandial glucose excursions for type 1 patients with diabetes. In Automation Science and Engineering (CASE), 2011 IEEE Conference on. IEEE, 702--707.Google ScholarGoogle ScholarCross RefCross Ref
  26. G.M. Steil, K. Rebrin, F. Hariri, S. Jinagonda, S. Tadros, C. Darwin, and M.F. Saad. 2005. Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia. Diabetologia 48, 9 (2005), 1833--1840.Google ScholarGoogle ScholarCross RefCross Ref
  27. Jose Manuel Velasco, Oscar Garnica, Juan Lanchares, Marta Botella, and J. Ignacio Hidalgo. 2018. Combining data augmentation, EDAs and grammatical evolution for blood glucose forecasting. Memetic Computing (22 Jun 2018).Google ScholarGoogle Scholar
  28. S. Wagner and M. Affenzeller. 2005. HeuristicLab: A Generic and Extensible Optimization Environment. (2005), 538--541.Google ScholarGoogle Scholar

Index Terms

  1. Can clustering improve glucose forecasting with genetic programming models?

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader