skip to main content
10.1145/3319619.3326868acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

An analysis of dimensionality reduction techniques for visualizing evolution

Published: 13 July 2019 Publication History

Abstract

We consider the problem of visualizing the population dynamics along an evolutionary run using a dimensionality reduction technique for mapping individuals from the original search space to a 2-D space. We quantitatively assess four of these techniques in terms of their ability to preserve useful information about (a) population movements and (b) exploration-exploitation trade-off. We propose two compact visualizations aimed at highlighting these two aspects of population dynamics and evaluate them qualitatively. The results are very promising as the proposed framework is indeed able to represent crucial properties of population dynamics in a way that is both highly informative and simple to understand.

References

[1]
Heni Ben Amor and Achim Rettinger. 2005. Intelligent exploration for genetic algorithms: Using self-organizing maps in evolutionary computation. In Companion Material Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '05. ACM, 1531--1538.
[2]
Bogdan Burlacu, Michael Affenzeller, Michael Kommenda, Stephan M. Winkler, and Gabriel Kronberger. 2013. Visualization of genetic lineages and inheritance information in genetic programming. In Companion Material Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '13. ACM, 1351--1358.
[3]
Waldo Cancino Ticona, Nadia Boukhelifa, Anastasia Bezerianos, and Evelyne Lutton. 2013. Evolutionary visual exploration: Experimental analysis of algorithm behaviour. In Companion Material Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '13. 1373--1380.
[4]
Trevor D. Collins. 2003. Applying software visualization technology to support the use of evolutionary algorithms. Journal of Visual Languages and Computing 14, 2 (2003), 123--150.
[5]
Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. 2013. Exploration and exploitation in evolutionary algorithms: A survey. ACM Computing Surveys (CSUR) 45, 3 (2013), 35.
[6]
António Cruz, Penousal Machado, Filipe Assunção, and António Leitão. 2015. ELICIT: Evolutionary computation visualization. In Companion Material Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '15. ACM, 949--956.
[7]
J. Drchal and M. Šnorek. 2007. Diversity visualization in evolutionary algorithms. In Proceedings of 41th Spring International Conference, MOSIS'07. Ostrava: MARQ, 77--84.
[8]
Richard Dybowski, Trevor D. Collins, and P. R. Weller. 1996. Visualization of Binary String Convergence by Sammon Mapping. In Proceedings of the Fifth Annual Conference on Evolutionary Programming. MIT Press, 377--383.
[9]
Emma Hart and Peter Ross. 2001. GAVEL---A new tool for genetic algorithm visualization. IEEE Transactions on Evolutionary Computation 5, 4 (2001), 335--348.
[10]
Harold Hotelling. 1933. Analysis of a complex of statistical variables into principal components. Journal of educational psychology 24, 6 (1933), 417.
[11]
Guillaume Jornod, Ezequiel Di Mario, Iñaki Navarro, and Alcherio Martinoli. 2015. SwarmViz: An open-source visualization tool for Particle Swarm Optimization. In Congress on Evolutionary Computation, CEC 2015. IEEE, 179--186.
[12]
Andreas Kerren and Thomas Egger. 2005. EAVis: A Visualization Tool for Evolutionary Algorithms. In 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2005). IEEE, 299--301.
[13]
Namrata Khemka and Christian Jacob. 2009. VISPLORE: a toolkit to explore particle swarms by visual inspection. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '09. ACM, 41--48.
[14]
Yong-Hyuk Kim, Kang Hoon Lee, and Yourim Yoon. 2009. Visualizing the search process of particle swarm optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '09. ACM, 49--56.
[15]
Shih-Hsi Liu, Matej Črepinšek, and Marjan Mernik. 2012. Analysis of VEGA and SPEA2 using exploration and exploitation measures. In Proceedings of the 5th International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2012. Jožef Stefan Institute, 97--108.
[16]
Evelyne Lutton, Julie Foucquier, Nathalie Perrot, Jean Louchet, and Jean-Daniel Fekete. 2011. Visual analysis of population scatterplots. In Revised Selected Papers from the 10th International Conference on Artificial Evolution (Evolution Artificielle), EA 2011 (Lecture Notes in Computer Science), Vol. 7401. Springer, 61--72.
[17]
Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of machine learning research 9, Nov (2008), 2579--2605.
[18]
Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018).
[19]
Nicholas Freitag McPhee, Maggie M. Casale, Mitchell Finzel, Thomas Helmuth, and Lee Spector. 2016. Visualizing genetic programming ancestries. In Companion Material Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '16. ACM, 1419--1426.
[20]
Eric Medvet, Alberto Bartoli, Alessio Ansuini, and Fabiano Tarlao. 2018. Observing the Population Dynamics in GE by means of the Intrinsic Dimension. arXiv:preprint arXiv:1812.02504 (2018).
[21]
Eric Medvet, Marco Virgolin, Mauro Castelli, Peter AN Bosman, Ivo Gonçalves, and Tea Tušar. 2018. Unveiling evolutionary algorithm representation with DU maps. Genetic Programming and Evolvable Machines 19, 3 (2018), 351--389.
[22]
K. Michalak. 2019. Low-Dimensional Euclidean Embedding for Visualization of Search Spaces in Combinatorial Optimization. IEEE Transactions on Evolutionary Computation 23, 2 (2019), 232--246.
[23]
Heinz Mühlenbein and Dirk Schlierkamp-Voosen. 1993. Predictive models for the breeder genetic algorithm i. continuous parameter optimization. Evolutionary computation 1, 1 (1993), 25--49.
[24]
Hartmut Pohlheim. 2006. Multidimensional Scaling for Evolutionary Algorithms-Visualization of the Path through Search Space and Solution Space Using Sammon Mapping. Artificial Life 12, 2 (2006), 203--209.
[25]
Hartmut Pohlheim. 2006. Understanding the Course and State of Evolutionary Optimizations Using Visualization: Ten Years of Industry Experience with Evolutionary Algorithms. Artificial Life 12, 2 (2006), 217--227.
[26]
John W Sammon. 1969. A nonlinear mapping for data structure analysis. IEEE Transactions on computers 100, 5 (1969), 401--409.
[27]
William B. Shine and Christoph F. Eick. 1997. Visualizing the evolution of genetic algorithm search processes. In International Conference on Evolutionary Computation. IEEE, 367--372.
[28]
Giovanni Squillero and Alberto Tonda. 2016. Divergence of character and premature convergence: A survey of methodologies for promoting diversity in evolutionary optimization. Information Sciences 329 (2016), 782--799.
[29]
Joshua B Tenenbaum, Vin De Silva, and John C Langford. 2000. A global geometric framework for nonlinear dimensionality reduction. science 290, 5500 (2000), 2319--2323.
[30]
Warren S Torgerson. 1952. Multidimensional scaling: I. Theory and method. Psychometrika 17, 4 (1952), 401--419.
[31]
Zoltán Tóth. 2003. A graphical user interface for evolutionary algorithms. Acta Cybernetica 16, 2 (2003), 337--365.
[32]
Laurens van der Maaten, Eric Postma, and Jaap van den Herik. 2009. Dimensionality Reduction: A Comparative Review. Technical Report TiCC-TR 2009-005. Tilburg University Technical Report.

Cited By

View all
  • (2024)An Extension of STNWeb Functionality: On the Use of Hierarchical Agglomerative Clustering as an Advanced Search Space Partitioning StrategyProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3654084(151-159)Online publication date: 14-Jul-2024
  • (2024)On the Investigation of Multimodal Evolutionary Algorithms Using Search Trajectory NetworksProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3654050(32-40)Online publication date: 14-Jul-2024
  • (2024)ParetoTracker: Understanding Population Dynamics in Multi-Objective Evolutionary Algorithms Through Visual AnalyticsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345614231:1(820-830)Online publication date: 10-Sep-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference Companion
July 2019
2161 pages
ISBN:9781450367486
DOI:10.1145/3319619
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 July 2019

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. ancestry
  2. diversity
  3. evolutionary algorithms
  4. exploration-exploitation
  5. visualization

Qualifiers

  • Research-article

Funding Sources

  • Slovenian Research Agency
  • AWS Cloud Credits for Research

Conference

GECCO '19
Sponsor:
GECCO '19: Genetic and Evolutionary Computation Conference
July 13 - 17, 2019
Prague, Czech Republic

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)26
  • Downloads (Last 6 weeks)1
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An Extension of STNWeb Functionality: On the Use of Hierarchical Agglomerative Clustering as an Advanced Search Space Partitioning StrategyProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3654084(151-159)Online publication date: 14-Jul-2024
  • (2024)On the Investigation of Multimodal Evolutionary Algorithms Using Search Trajectory NetworksProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3654050(32-40)Online publication date: 14-Jul-2024
  • (2024)ParetoTracker: Understanding Population Dynamics in Multi-Objective Evolutionary Algorithms Through Visual AnalyticsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345614231:1(820-830)Online publication date: 10-Sep-2024
  • (2024)Integration of evolutionary automated machine learning with structural sensitivity analysis for composite pipelinesKnowledge-Based Systems10.1016/j.knosys.2024.112363302(112363)Online publication date: Oct-2024
  • (2024)Comparing dimensionality reduction techniques for visual analysis of the LSTM hidden activity on multi-dimensional time series modelingThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-023-03235-940:11(8243-8261)Online publication date: 1-Nov-2024
  • (2023)Search Trajectory Networks Meet the Web: A Web Application for the Visual Comparison of Optimization AlgorithmsProceedings of the 2023 12th International Conference on Software and Computer Applications10.1145/3587828.3587843(89-96)Online publication date: 23-Feb-2023
  • (2023)Effects of Optimal Genetic Material in the Initial Population of Evolutionary Algorithms2023 IEEE Symposium Series on Computational Intelligence (SSCI)10.1109/SSCI52147.2023.10372037(1386-1391)Online publication date: 5-Dec-2023
  • (2023)Evolutionary Computation Visualization: ECvisIEEE Access10.1109/ACCESS.2023.324407811(16474-16482)Online publication date: 2023
  • (2023)On Explanations for Hybrid Artificial IntelligenceArtificial Intelligence XL10.1007/978-3-031-47994-6_1(3-15)Online publication date: 8-Nov-2023
  • (2022)An explainable visualisation of the evolutionary search processProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3520304.3533984(1794-1802)Online publication date: 9-Jul-2022
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media