skip to main content
research-article

Split Contraction: The Untold Story

Authors Info & Claims
Published:31 May 2019Publication History
Skip Abstract Section

Abstract

The edit operation that contracts edges, which is a fundamental operation in the theory of graph minors, has recently gained substantial scientific attention from the viewpoint of Parameterized Complexity. In this article, we examine an important family of graphs, namely, the family of split graphs, which in the context of edge contractions is proven to be significantly less obedient than one might expect. Formally, given a graph G and an integer k, SPLIT CONTRACTION asks whether there exists XE(G) such that G/X is a split graph and |X| ≤ k. Here, G/X is the graph obtained from G by contracting edges in X. Guo and Cai [Theoretical Computer Science, 2015] claimed that SPLIT CONTRACTION is fixed-parameter tractable. However, our findings are different. We show that SPLIT CONTRACTION, despite its deceptive simplicity, is W[1]-hard. Our main result establishes the following conditional lower bound: Under the Exponential Time Hypothesis, SPLIT CONTRACTION cannot be solved in time 2o(ℓ2)⋅ nO(1), where ℓ is the vertex cover number of the input graph. We also verify that this lower bound is essentially tight. To the best of our knowledge, this is the first tight lower bound of the form 2o(ℓ2)⋅ nO(1) for problems parameterized by the vertex cover number of the input graph. In particular, our approach to obtain this lower bound borrows the notion of harmonious coloring from Graph Theory, and might be of independent interest.

References

  1. Takao Asano and Tomio Hirata. 1983. Edge-contraction problems. J. Comput. Syst. Sci. 26, 2 (1983), 197--208.Google ScholarGoogle ScholarCross RefCross Ref
  2. Ivan Bliznets, Marek Cygan, Pawel Komosa, Lukás Mach, and Michal Pilipczuk. 2016. Lower bounds for the parameterized complexity of minimum fill-in and other completion problems. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16). ACM-SIAM, 1132--1151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michal Pilipczuk. 2015. A subexponential parameterized algorithm for proper interval completion. SIAM J. Discrete Math. 29, 4 (2015), 1961--1987.Google ScholarGoogle ScholarCross RefCross Ref
  4. Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michal Pilipczuk. 2018. Subexponential parameterized algorithm for interval completion. ACM Trans. Algor. 14, 3 (2018), 35:1--35:62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Leizhen Cai. 1996. Fixed-parameter tractability of graph modification problems for hereditary properties. Inform. Process. Lett. 58, 4 (1996), 171--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Leizhen Cai and Chengwei Guo. 2013. Contracting few edges to remove forbidden induced subgraphs. In Proceedings of the 8th International Symposium on Parameterized and Exact Computation (IPEC’13). Springer, Cham, 97--109.Google ScholarGoogle ScholarCross RefCross Ref
  7. Yixin Cao. 2016. Linear recognition of almost interval graphs. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16). ACM-SIAM, 1096--1115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Yixin Cao. 2017. Unit interval editing is fixed-parameter tractable. Info. Comput. 253 (2017), 109--126.Google ScholarGoogle Scholar
  9. Yixin Cao and Dániel Marx. 2015. Interval deletion is fixed-parameter tractable. ACM Trans. Algor. 11, 3 (2015), 21:1--21:35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Yixin Cao and Dániel Marx. 2016. Chordal editing is fixed-parameter tractable. Algorithmica 75, 1 (2016), 118--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jianer Chen, Iyad A Kanj, and Ge Xia. 2010. Improved upper bounds for vertex cover. Theoret. Comput. Sci. 411, 40 (2010), 3736--3756. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin, Jakub Pachocki, and Arkadiusz Socala. 2017. Tight lower bounds on graph embedding problems. J. ACM 64, 3 (2017), 18:1--18:22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. 2015. Parameterized Algorithms. Springer International Publishing, Switzerland. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. 2016. Known algorithms for edge clique cover are probably optimal. SIAM J. Comput. 45, 1 (2016), 67--83.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Reinhard Diestel. 2012. Graph Theory, 4th ed. Graduate texts in mathematics, Vol. 173. Springer-Verlag, Berlin.Google ScholarGoogle Scholar
  16. Rodney G. Downey and Michael R. Fellows. 1995. Fixed-parameter tractability and completeness II: On completeness for W{1}. Theoret. Comput. Sci. 141, 182 (1995), 109--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Rod G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer-Verlag, London. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Pål Grønås Drange, Markus Sortland Dregi, Daniel Lokshtanov, and Blair D. Sullivan. 2015. On the threshold of intractability. In Proceedings of the 23rd Annual European Symposium on Algorithms (ESA’15). Springer-Verlag, Berlin, 411--423.Google ScholarGoogle Scholar
  19. Pål Grønås Drange, Fedor V. Fomin, Michal Pilipczuk, and Yngve Villanger. 2015. Exploring the subexponential complexity of completion problems. ACM Trans. Comput. Theory 7, 4 (2015), 14:1--14:38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pål Grønås Drange and Michal Pilipczuk. 2018. A polynomial kernel for trivially perfect editing. Algorithmica 80 (2018), 3481--3524. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Keith Edwards. 1997. The harmonious chromatic number and the achromatic number. In Surveys in Combinatorics. Cambridge University Press, Cambridge, 13--48.Google ScholarGoogle Scholar
  22. Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. 2009. On the parameterized complexity of multiple-interval graph problems. Theoret. Comput. Sci. 410, 1 (2009), 53--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Yngve Villanger. 2014. Tight bounds for parameterized complexity of cluster editing with a small number of clusters. J. Comput. Syst. Sci. 80, 7 (2014), 1430--1447.Google ScholarGoogle ScholarCross RefCross Ref
  25. Fedor V. Fomin and Yngve Villanger. 2013. Subexponential parameterized algorithm for minimum fill-in. SIAM J. Comput. 42, 6 (2013), 2197--2216.Google ScholarGoogle ScholarCross RefCross Ref
  26. Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan, Ashutosh Rai, and M. S. Ramanujan. 2015. Faster parameterized algorithms for deletion to split graphs. Algorithmica 71, 4 (2015), 989--1006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Petr A. Golovach, Pim van ’t Hof, and Daniel Paulusma. 2013. Obtaining planarity by contracting few edges. Theoret. Comput. Sci. 476 (2013), 38--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Martin Charles Golumbic. 2004. Algorithmic Graph Theory and Perfect Graphs. Vol. 57. Elsevier, Academic Press.Google ScholarGoogle Scholar
  29. Sylvain Guillemot and Dániel Marx. 2013. A faster FPT algorithm for bipartite contraction. Inform. Process. Lett. 113, 22--24 (2013), 906--912. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Chengwei Guo and Leizhen Cai. 2015. Obtaining split graphs by edge contraction. Theoret. Comput. Sci. 607 (2015), 60--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pinar Heggernes, Pim van ’t Hof, Benjamin Lévêque, Daniel Lokshtanov, and Christophe Paul. 2014. Contracting graphs to paths and trees. Algorithmica 68, 1 (2014), 109--132.Google ScholarGoogle ScholarCross RefCross Ref
  32. Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and Christophe Paul. 2013. Obtaining a bipartite graph by contracting few edges. SIAM J. Discrete Math. 27, 4 (2013), 2143--2156.Google ScholarGoogle ScholarCross RefCross Ref
  33. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential complexity?J. Comput. Syst. Sci. 63, 4 (2001), 512--530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Haim Kaplan, Ron Shamir, and Robert Endre Tarjan. 1999. Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28, 5 (1999), 1906--1922. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Christian Komusiewicz. 2018. Tight running time lower bounds for vertex deletion problems. ACM Trans. Comput. Theory 10, 2, Article 6 (2018), 18 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sin-Min Lee and John Mitchem. 1987. An upper bound for the harmonious chromatic number. J. Graph Theory 11, 4 (1987), 565--567.Google ScholarGoogle ScholarCross RefCross Ref
  37. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. 2018. Slightly superexponential parameterized problems. SIAM J. Comput. 47, 3 (2018), 675--702.Google ScholarGoogle ScholarCross RefCross Ref
  38. Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. 2013. On the hardness of eliminating small induced subgraphs by contracting edges. In Proceedings of the 8th International Symposium on Parameterized and Exact Computation (IPEC’13). Springer, Cham, Sophia Antipolis, France, 243--254.Google ScholarGoogle ScholarCross RefCross Ref
  39. Dániel Marx and Valia Mitsou. 2016. Double-exponential and triple-exponential bounds for choosability problems parameterized by treewidth. In Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming, (ICALP’16). Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 28:1--28:15.Google ScholarGoogle Scholar
  40. Colin McDiarmid and Luo Xinhua. 1991. Upper bounds for harmonious coloring. J. Graph Theory 15, 6 (1991), 629--636.Google ScholarGoogle ScholarCross RefCross Ref
  41. Rolf Niedermeier. 2006. Invitation to Fixed-parameter Algorithms. Oxford University Press, Oxford.Google ScholarGoogle Scholar
  42. Carla D. Savage. 1982. Depth-first search and the vertex cover problem. Inform. Process. Lett. 14, 5 (1982), 233--237.Google ScholarGoogle ScholarCross RefCross Ref
  43. Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. 1981. On the removal of forbidden graphs by edge-deletion or by edge-contraction. Discrete Appl. Math. 3, 2 (1981), 151--153.Google ScholarGoogle ScholarCross RefCross Ref
  44. Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. 1983. On the NP-hardness of edge-deletion and-contraction problems. Discrete Appl. Math. 6, 1 (1983), 63--78.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Split Contraction: The Untold Story

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Computation Theory
          ACM Transactions on Computation Theory  Volume 11, Issue 3
          September 2019
          164 pages
          ISSN:1942-3454
          EISSN:1942-3462
          DOI:10.1145/3323875
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 31 May 2019
          • Accepted: 1 March 2019
          • Revised: 1 October 2018
          • Received: 1 October 2017
          Published in toct Volume 11, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format