skip to main content
10.1145/332306.332558acmconferencesArticle/Chapter ViewAbstractPublication PagesrecombConference Proceedingsconference-collections
Article
Free Access

Determining contact energy function for continuous state models of globular protein conformations

Published:08 April 2000Publication History

ABSTRACT

One of the approaches to protein structure prediction is to obtain energy functions which can recognize the native conformation of a given sequence among a zoo of conformations. The discriminations can be done by assigning the lowest energy to the native conformation, with the guarantee that the native is in the zoo. Well-adjusted functions, then, can be used in the search for other (near-) natives. Here the aim is the discrimination at relatively high resolution (RMSD difference between the native and the closest nonnative is around 1 Å) by pairwise energy potentials. The results show that the potential can be trained to discriminate between the native conformation of one protein as the (near-) global minimum, and other nonnatives, including energy-minimized ones (or local minima). This potential function is able to identify the native conformation of another protein, too.

References

  1. 1.Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (1993). Nonlinear Programming: Theory and Algorithms, 2rid ed., John Wiley & Sons, Inc., New York.Google ScholarGoogle Scholar
  2. 2.Bemstein, E C., Koetzle, T F., Williams, G. G. B., Meyer, F. F., Jr., Brice, M. D., Rodgers, I. R., Kennard, O., Shimanouchi, T, & Tasumi, M. (1977). The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol., 112, 535- 542.Google ScholarGoogle ScholarCross RefCross Ref
  3. 3.Bowie, J. U., LOthy, R. & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science., 253, 164-170.Google ScholarGoogle Scholar
  4. 4.Bryant, S. H. & Lawrence, C. E., (1993). An empirical energy function for threading protein sequence through the folding motif. Proteins, 16, 92-112.Google ScholarGoogle ScholarCross RefCross Ref
  5. 5.Bryngelson, J. D., Onuchic, J. N., Socci, N. D., & Wolynes, E G. (1995). Funnels, pathways, and the energy landscape of protein-folding: a synthesis. Proteins, 21, 167-195.Google ScholarGoogle ScholarCross RefCross Ref
  6. 6.Crawford, O. H. (1999). A fist, stochastic threading algorithm for proteins. Bioinformatics, 15, 66-71.Google ScholarGoogle ScholarCross RefCross Ref
  7. 7.Crippen, G. M. (1996). Easily searched protein folding potentials. J. Mol. Biol., 260, 467-475.Google ScholarGoogle ScholarCross RefCross Ref
  8. 8.Deutsch, I. M. & Kurosky, T (1996). New algorithm for protein design. Phys. Rev. Lett., 76, 323-326.Google ScholarGoogle ScholarCross RefCross Ref
  9. 9.Go, N. (1983). Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng., 12, 183-210.Google ScholarGoogle ScholarCross RefCross Ref
  10. 10.Godzak, A., Kolinski, A., & Skolmck, J. (1995). Are proteins ideal mixtures of amino-acids? Analysis of energy parameter sets. Protein Sci., 4, 2107-2117.Google ScholarGoogle Scholar
  11. 11.Hao, M. & Scheraga, H. A. (1996). Optimizmg potential functions for protein folding. J. Phys. Chem., 100, 14540-14548.Google ScholarGoogle ScholarCross RefCross Ref
  12. 12.Hendhch, M., Lackner, P., Weltckus, S., Floeckner, H., Froschauer, R., Gottsbacher, K., Casari, G, & Sippl, M. J. (1990). Identification of native protein folds amongst a large number of incorrect models. The calculation of low energy conformations from potentials of mean force. J. biol. Biol., 216, 167-180.Google ScholarGoogle Scholar
  13. 13.Hestenes, M. R. (1980). Conjugate direction methods in optimization, Springer-Verlag, New York.Google ScholarGoogle Scholar
  14. 14.Hobohm, U. & Sander, C. (1994). Enlarged representative set of protein structures. Protein Sci., 3, 522- 524.Google ScholarGoogle Scholar
  15. 15.Huang, E. S., Subbiah, S., & Levitt, M. (1995). Recognizing native folds by the arrangement of hydrophobic and polar residues. J. Mol. Biol., 252, 709- 720.Google ScholarGoogle ScholarCross RefCross Ref
  16. 16.Huang, E. S., Subbiah, S., Tsai, J. & Levitt, M. (1996). Using a hydrophobic contact potential to evaluate native and near-native folds generated by molecular dynamics simulations. J. Mol. Biol., 257, 716-725.Google ScholarGoogle ScholarCross RefCross Ref
  17. 17.Kabseh, W. (1978). A discussion of the solution for the best rotation to relate two sets of vectors. Acta Cryst., A34, 827-828.Google ScholarGoogle ScholarCross RefCross Ref
  18. 18.Klimov, D. K. & Thirumalai, D. (1998). Cooperativity in protein folding' from lattice models with sldechains to real proteins. Fold. Design, 3, 127-139.Google ScholarGoogle ScholarCross RefCross Ref
  19. 19.Lathrop, R. H. & Smith, T. F. (1996). Global optimum protein threading wtth gapped ahgnment and empirical pair score functions. J. Mol. Biol., 255, 641-665.Google ScholarGoogle ScholarCross RefCross Ref
  20. 20.Maiorov, V. N. & Crippen, G. M. (1992). Contact potential that recognizes the correct folding of globulax proteins. J. Mol. Biol., 227, 876-888.Google ScholarGoogle ScholarCross RefCross Ref
  21. 21.Maiorov, V. N. & Crippen, G. M. (1995). Size independent comparison of protein three-dimensional structures. Proteins, 22, 273-283.Google ScholarGoogle ScholarCross RefCross Ref
  22. 22.Mirny, L. A. & Shakhaovich, E. I. (1996). How to derive a protein folding potential? A new approach to an old problem. J. Mol. Biol., 264, 1164-1179.Google ScholarGoogle ScholarCross RefCross Ref
  23. 23.Miyazawa, S. & Jemlgan, R. L. (1985). Estimation of effective mterresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules, 18, 534-552.Google ScholarGoogle ScholarCross RefCross Ref
  24. 24.Miyazawa, S. & Jemigan, R. L. (1996). Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol., 256, 623-644.Google ScholarGoogle ScholarCross RefCross Ref
  25. 25.Momany, F. A., McGuire, R. F., Burgess, A. W., &- Scheraga, H. A. (1975). The mean geometry of the pepude unit from crystal structure data. Biochim Biophys. Acta. 359, 298-302.Google ScholarGoogle Scholar
  26. 26.Park, B. H. & Levitt, M. (1995). The complexity and accuracy of discrete state models of protein structure. J. Mol. Biol., 249, 493-507.Google ScholarGoogle ScholarCross RefCross Ref
  27. 27.Park, B. & Levitt, M. (1996). Energy functions that discriminate X-ray and near-native folds from wellconstructed decoys. J. Mol. Biol., 258, 367-392.Google ScholarGoogle ScholarCross RefCross Ref
  28. 28.Park, B., Huang, E. S., & Levitt, M. (1997). Factors affecting the ability of energy funcnons to discriminate correct from incorrect folds. J. Mol. Biol., 266, 831-846.Google ScholarGoogle ScholarCross RefCross Ref
  29. 29.Schulz, G. E. & Schirmer, R. H. (1979). Principles of Protein Structure, Springer-Vedag, New York.Google ScholarGoogle Scholar
  30. 30.Shortle, D., Simons, K. T, & Baker, D. (1998). Clus~ tering of low-energy conformations near the nauve structures of small protein. Proc. Natl. Acad. Sci. USA., 95, 1158-1162.Google ScholarGoogle ScholarCross RefCross Ref
  31. 31.Thomas, P. D. & Dill, K. A. (1996). Statistical potentials extracted from protein structures: how accurate are they ? J. Mol. Biol., 257, 453-469.Google ScholarGoogle ScholarCross RefCross Ref
  32. 32.Torda, A. E., (1997). Perspectives in protein-fold recognition., Curt:. Opin. Struct. Biol., 7, 200-205.Google ScholarGoogle ScholarCross RefCross Ref
  33. 33.Vajda, S., Sippl, M., & Novotny, J., (1997). Perspectives in protein-fold recogmtion., Curt. Opin. Struct. Biol., 7, 222-228.Google ScholarGoogle ScholarCross RefCross Ref
  34. 34.Vendruscolo, M. & Domany, E. (1998). Pairwise contact potentials are unsuitable for protein folding. J. Chem. Phys., 109, 11101-11108.Google ScholarGoogle ScholarCross RefCross Ref
  35. 35.Wang, Y., Zhang, H., Li, W., & Scott, R. A. (1995). Discriminating compact normative structures from the nauve structure of globular proteins. Proc. Natl. Acad. Sci. USA, 92, 709-713.Google ScholarGoogle ScholarCross RefCross Ref
  36. 36.Yue, K. & Dill, K. A. (1995). Forces of ternary structural orgamzation in globular proteins. Proc. Natl. Acad. Sci. USA., 92, 146-150.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    RECOMB '00: Proceedings of the fourth annual international conference on Computational molecular biology
    April 2000
    329 pages
    ISBN:1581131860
    DOI:10.1145/332306

    Copyright © 2000 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 8 April 2000

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • Article

    Acceptance Rates

    Overall Acceptance Rate148of538submissions,28%
  • Article Metrics

    • Downloads (Last 12 months)6
    • Downloads (Last 6 weeks)1

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader