skip to main content
10.1145/3324033.3324042acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiceccConference Proceedingsconference-collections
research-article

Detection of Stator Faults in Induction Motors Using Alpha-Beta Transform and Image Analysis

Authors Info & Claims
Published:13 April 2019Publication History

ABSTRACT

In the present work, the diagnosis of incipient faults in three-phase induction motors is proposed. The system consists in to submit the three-phase induction motor signals to the alpha-beta transform. After that, the pattern obtained from the alpha-beta transform is submitted to the Hough transform in order to find the set of the parameters that describe the pattern. Finally, the set of parameters obtained by the Hough transform is used as input to the KNN algorithm to classify into three groups: Not fault, Medium fault, and Severe fault. The Classifier was tested obtaining 93.9% of accuracy.

References

  1. Amaral, T. G., Pires, V. F., Martins, J. F., Pires, A. J., & Crisostomo, M. M. (2007, November). Image processing to a neuro-fuzzy classifier for detection and diagnosis of induction motor stator fault. In Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE (pp. 2408--2413). IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  2. Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern recognition, 13(2), 111--122.Google ScholarGoogle Scholar
  3. Bazan, G. H., Scalassara, P. R., Endo, W., Goedtel, A., Godoy, W. F., & Palácios, R. H. C. (2017). Stator fault analysis of three-phase induction motors using information measures and artificial neural networks. Electric Power Systems Research, 143, 347--356.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bhowmik, P. S., Prakash, M., & Pradhan, S. (2014, October). A novel neuro-classifier using Multiscale Permutation Entropy for motor fault diagnosis. In Control Applications (CCA), 2014 IEEE Conference on (pp. 370--375). IEEE.Sannella, M. J. 1994. Constraint Satisfaction and Debugging for Interactive User Interfaces. Doctoral Thesis. UMI Order Number: UMI Order No. GAX95--09398., University of Washington.Google ScholarGoogle ScholarCross RefCross Ref
  5. Climente-Alarcon, V. I. C. E. N. T. E., Antonino-Daviu, J. A., Riera-Guasp, M., Puche-Panadero, R., & Escobar, L. (2012). Application of the Wigner--Ville distribution for the detection of rotor asymmetries and eccentricity through high-order harmonics. Electric Power Systems Research, 91, 28--36.Google ScholarGoogle ScholarCross RefCross Ref
  6. Duran, M., Gonzalez-Prieto, I., Rios, N., & Barrero, F. (2018). A simple, fast and robust open-phase fault detection technique for six-phase induction motor drives. IEEE Trans. Power Electron, 33(1), 547--557.Google ScholarGoogle ScholarCross RefCross Ref
  7. Ebrahimi, B. M., & Faiz, J. (2010). Feature extraction for short-circuit fault detection in permanent-magnet synchronous motors using stator-current monitoring. IEEE Transactions on Power Electronics, 25(10), 2673--2682.Google ScholarGoogle ScholarCross RefCross Ref
  8. Henao, H., Capolino, G. A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C., Strangas, E., & Hedayati-Kia, S. (2014). Trends in fault diagnosis for electrical machines: A review of diagnostic techniques. IEEE industrial electronics magazine, 8(2), 31--42.Google ScholarGoogle Scholar
  9. Karmakar, S., Chattopadhyay, S., Mitra, M., & Sengupta, S. (2016). Induction motor fault diagnosis. Publisher Springer Singapore.Google ScholarGoogle ScholarCross RefCross Ref
  10. Konar, P., & Chattopadhyay, P. (2011). Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs). Applied Soft Computing, 11(6), 4203--4211. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mukhopadhyay, P., & Chaudhuri, B. B. (2015). A survey of Hough Transform. Pattern Recognition, 48(3), 993--1010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ondel, O., Boutleux, E., & Clerc, G. (2006). A method to detect broken bars in induction machine using pattern recognition techniques. IEEE Transactions on industry applications, 42(4), 916--923.Google ScholarGoogle ScholarCross RefCross Ref
  13. PEH, D. (2007). RO Duda, PE Hart, and DG Stork, Pattern Classification, New York: John Wiley & Sons, 2001, pp. xx+ 654, ISBN: 0-471-05669-3. Journal of Classification, 24(2), 305--307. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Shi, P., Chen, Z., Vagapov, Y., & Zouaoui, Z. (2014). A new diagnosis of broken rotor bar fault extent in three phase squirrel cage induction motor. Mechanical Systems and Signal Processing, 42(1-2), 388--403.Google ScholarGoogle ScholarCross RefCross Ref
  15. Soualhi, A., Clerc, G., & Razik, H. (2013). Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique. IEEE Transactions on Industrial Electronics, 60(9), 4053--4062.Google ScholarGoogle ScholarCross RefCross Ref
  16. Verma, A., Sarangi, S., & Kolekar, M. H. (2014). Stator winding fault prediction of induction motors using multiscale entropy and grey fuzzy optimization methods. Computers & Electrical Engineering, 40(7), 2246--2258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. García Guevara, F. (2017). Diagnóstico de Fallas en Máquinas Eléctricas (PhD tesis) Instituto Tecnológico de Aguascalientes.Google ScholarGoogle Scholar
  18. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). New York: springer. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Detection of Stator Faults in Induction Motors Using Alpha-Beta Transform and Image Analysis

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICECC '19: Proceedings of the 2019 2nd International Conference on Electronics, Communications and Control Engineering
      April 2019
      105 pages
      ISBN:9781450362634
      DOI:10.1145/3324033

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 April 2019

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader