skip to main content
10.1145/3330393.3330411acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmsspConference Proceedingsconference-collections
research-article

Optimal Transport of Deep Feature for Image Style Transfer

Authors Info & Claims
Published:10 May 2019Publication History

ABSTRACT

Image style transfer is a classic image editing task which aims to transfer arbitrary visual styles to content images. In recent years, it has been revealed that a well-trained convolutional neural network with sufficient labeled data is powerful to deal with the style transfer problem. Thanks to the recent advances in the analysis of neural style transfer, the image style transfer can be cast as a problem of distribution alignment. In this paper, we propose to solve this issue by incorporating the theory of optimal transport in a simple and intuitive way. The main component of our style transfer method is an optimal transportation map, which is derived from the Monge-Kantorovicth theory of mass transportation, to perform the alignment process from the content image to the style image. We compare the generated stylized images with a number of representative algorithms to demonstrate the effectiveness of our approach. We also show that our results are visually more consistent and well-stylized simultaneously.

References

  1. Ashikhmin, N. (2003). Fast texture transfer. Computer Graphics & Applications IEEE, 23(4), 38--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2414--2423).Google ScholarGoogle ScholarCross RefCross Ref
  3. Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576.Google ScholarGoogle Scholar
  4. Gooch, B., & Gooch, A. (2001). Non-photorealistic rendering. AK Peters/CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Strothotte, T., & Schlechtweg, S. (2002). Non-photorealistic computer graphics: modeling, rendering, and animation. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Lee, H., Seo, S., Ryoo, S., & Yoon, K. (2010, June). Directional texture transfer. In Proceedings of the 8th International Symposium on Non-Photorealistic Animation and Rendering (pp. 43--48). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Efros, A. A., & Leung, T. K. (1999, September). Texture synthesis by non-parametric sampling. In iccv (pp. 1033). IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gatys, L., Ecker, A. S., & Bethge, M. (2015). Texture synthesis using convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 262--270). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097--1105). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Efros, A. A., & Freeman, W. T. (2001, August). Image quilting for texture synthesis and transfer. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (pp. 341--346). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Frigo, O., Sabater, N., Delon, J., & Hellier, P. (2016). Split and match: Example-based adaptive patch sampling for unsupervised style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 553--561).Google ScholarGoogle ScholarCross RefCross Ref
  12. Elad, M., & Milanfar, P. (2017). Style Transfer via Texture Synthesis. IEEE Trans. Image Processing, 26(5), 2338--2351. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Li, C., & Wand, M. (2016). Combining markov random fields and convolutional neural networks for image synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2479--2486).Google ScholarGoogle ScholarCross RefCross Ref
  14. Johnson, J., Alahi, A., & Fei-Fei, L. (2016, October). Perceptual losses for real-time style transfer and super-resolution. In European Conference on Computer Vision (pp. 694--711). Springer, Cham.Google ScholarGoogle Scholar
  15. Ulyanov, D., Lebedev, V., Vedaldi, A., & Lempitsky, V. S. (2016, June). Texture Networks: Feed-forward Synthesis of Textures and Stylized Images. In ICML (pp. 1349--1357). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Portilla, J., & Simoncelli, E. P. (2000). A parametric texture model based on joint statistics of complex wavelet coefficients. International journal of computer vision, 40(1), 49--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gatys, L. A., Ecker, A. S., Bethge, M., Hertzmann, A., & Shechtman, E. (2017, July). Controlling perceptual factors in neural style transfer. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  18. Dumoulin, V., Shlens, J., & Kudlur, M. (2017). A learned representation for artistic style. Proc. of ICLR.Google ScholarGoogle Scholar
  19. Chen, D., Yuan, L., Liao, J., Yu, N., & Hua, G. (2017, July). Stylebank: An explicit representation for neural image style transfer. In Proc. CVPR (Vol. 1, No. 3, p. 4).Google ScholarGoogle Scholar
  20. Li, Y., Wang, N., Liu, J., & Hou, X. (2017). Demystifying neural style transfer. arXiv preprint arXiv:1701.01036. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Courty, N., Flamary, R., Tuia, D., & Rakotomamonjy, A. (2017). Optimal transport for domain adaptation. IEEE transactions on pattern analysis and machine intelligence, 39(9), 1853--1865.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Courty, N., Flamary, R., & Tuia, D. (2014, September). Domain adaptation with regularized optimal transport. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 274--289). Springer, Berlin, Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Chen, T. Q., & Schmidt, M. (2016). Fast patch-based style transfer of arbitrary style. arXiv preprint arXiv:1612.04337.Google ScholarGoogle Scholar
  24. Huang, X., & Belongie, S. J. (2017, February). Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. In ICCV (pp. 1510--1519).Google ScholarGoogle Scholar
  25. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., & Yang, M. H. (2017). Universal style transfer via feature transforms. In Advances in Neural Information Processing Systems (pp. 386--396). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Monge, G. (1781). Mémoire sur la théorie des déblais et des remblais. Histoire de l'Académie Royale des Sciences de Paris.Google ScholarGoogle Scholar
  27. Kantorovitch, L. (1958). On the translocation of masses. Management Science, 5(1), 1--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Knott, M., & Smith, C. S. (1984). On the optimal mapping of distributions. Journal of Optimization Theory and Applications, 43(1), 39--49.Google ScholarGoogle ScholarCross RefCross Ref
  29. K. Nichol. Painter by numbers, wikiart. https:// www.kaggle.com/c/painter-by-numbers, 2016.Google ScholarGoogle Scholar
  30. Perrot, M., Courty, N., Flamary, R., & Habrard, A. (2016). Mapping estimation for discrete optimal transport. In Advances in Neural Information Processing Systems (pp. 4197--4205) Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Optimal Transport of Deep Feature for Image Style Transfer

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICMSSP '19: Proceedings of the 2019 4th International Conference on Multimedia Systems and Signal Processing
      May 2019
      213 pages
      ISBN:9781450371711
      DOI:10.1145/3330393

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 May 2019

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader