skip to main content
10.1145/3341162.3343850acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
demonstration

A contactless Morse code text input system using COTS wifi devices

Published: 09 September 2019 Publication History

Abstract

For the patients with speech and motion impairments, there is an indispensable need to facilitate their communication with other people, using approaches such as eyeball tracking. However, these systems are usually complex and expensive. In this demo, we propose a WiFi-based contactless text input system, called WiMorse. The system allows these patients to communicate with other people by using WiFi signals to track single-finger movements and encoding them as Morse code to input text. However, we note that a small change in the target's location would lead to a significant change in the received WiFi signal pattern, making it impossible to recognize the finger gestures. To tackle this problem, we propose a signal transformation mechanism to obtain a consistent and stable signal pattern at various locations. By deploying only a pair of COTS WiFi devices, WiMorse can achieve real time recognition of finger generated Morse code with high accuracy, and is robust against input position, environment change, and user diversity.

Supplementary Material

ZIP File (p328-niu.zip)
Supplemental files.

References

[1]
Fadel Adib and Dina Katabi. 2013. See Through Walls with WiFi! ACM SIGCOMM Computer Communication Review 43, 4 (Aug. 2013), 75--86.
[2]
Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. 2011. Tool release: Gathering 802.11 n traces with channel state information. ACM SIGCOMM Computer Communication Review 41, 1 (2011), 53--53.
[3]
Xiang Li, Daqing Zhang, Jie Xiong, Yue Zhang, Shengjie Li, Yasha Wang, and Hong Mei. 2018. Training-Free Human Vitality Monitoring Using Commodity Wi-Fi Devices. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 3 (2018), 121.
[4]
Xuefeng Liu, Jiannong Cao, Shaojie Tang, and Jiaqi Wen. 2014. Wi-Sleep: Contactless sleep monitoring via WiFi signals. In 2014 IEEE Real-Time Systems Symposium. IEEE, 346--355.
[5]
Kai Niu, Fusang Zhang, Jie Xiong, Xiang Li, Enze Yi, and Daqing Zhang. 2018. Boosting Fine-grained Activity Sensing by Embracing Wireless Multipath Effects. In Proceedings of the 14th International Conference on Emerging Networking EXperiments and Technologies (CoNEXT '18). ACM, New York, NY, USA, 139--151.
[6]
Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. 2013. Whole-home gesture recognition using wireless signals. In Proceedings of the 19th annual international conference on Mobile computing & networking. ACM, 27--38.
[7]
Ronald W Schafer. 2011. What is a Savitzky-Golay filter?{lecture notes}. IEEE Signal processing magazine 28, 4 (2011), 111--117.
[8]
Weinan Shi, Chun Yu, Shuyi Fan, Feng Wang, Tong Wang, Xin Yi, Xiaojun Bi, and Yuanchun Shi. 2019. VIPBoard: Improving Screen-Reader Keyboard for Visually Impaired People with Character-Level Auto Correction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, 517.
[9]
Hao Wang, Daqing Zhang, Junyi Ma, Yasha Wang, Yuxiang Wang, Dan Wu, Tao Gu, and Bing Xie. 2016. Human respiration detection with commodity wifi devices: do user location and body orientation matter?. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 25--36.
[10]
Hao Wang, Daqing Zhang, Yasha Wang, Junyi Ma, Yuxiang Wang, and Shengjie Li. 2017. RT-Fall: A Real-Time and Contactless Fall Detection System with Commodity WiFi Devices. IEEE Trans. Mob. Comput. 16, 2 (2017), 511--526.
[11]
Wei Wang, Alex X Liu, Muhammad Shahzad, Kang Ling, and Sanglu Lu. 2015. Understanding and modeling of wifi signal based human activity recognition. In Proceedings of the 21st annual international conference on mobile computing and networking. ACM, 65--76.
[12]
Dan Wu, Daqing Zhang, Chenren Xu, Hao Wang, and Xiang Li. 2017. Device-Free WiFi Human Sensing: From Pattern-Based to Model-Based Approaches. IEEE Communications Magazine 55, 10 (2017), 91--97.
[13]
Dan Wu, Daqing Zhang, Chenren Xu, Yasha Wang, and Hao Wang. 2016. WiDir: walking direction estimation using wireless signals. In Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing. ACM, 351--362.
[14]
Youwei Zeng, Dan Wu, Ruiyang Gao, Tao Gu, and Daqing Zhang. 2018. FullBreathe: Full Human Respiration Detection Exploiting Complementarity of CSI Phase and Amplitude of WiFi Signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 3, Article 148 (Sept. 2018), 19 pages.
[15]
Daqing Zhang, Hao Wang, and Dan Wu. 2017. Toward centimeter-scale human activity sensing with Wi-Fi signals. Computer 50, 1 (2017), 48--57.
[16]
Fusang Zhang, Kai Niu, Jie Xiong, Beihong Jin, Tao Gu, Yuhang Jiang, and Daqing Zhang. 2019. Towards a Diffraction-based Sensing Approach on Human Activity Recognition. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 1 (2019), 33.
[17]
Fusang Zhang, Daqing Zhang, Jie Xiong, Hao Wang, Kai Niu, Beihong Jin, and Yuxiang Wang. 2018. From Fresnel Diffraction Model to Fine-grained Human Respiration Sensing with Commodity Wi-Fi Devices. In The Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT/Ubicomp 2018). 1--53.

Cited By

View all
  • (2025)Device-Free Human Activity Recognition: A Systematic Literature ReviewIEEE Open Journal of Instrumentation and Measurement10.1109/OJIM.2024.35028854(1-34)Online publication date: 2025

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
UbiComp/ISWC '19 Adjunct: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers
September 2019
1234 pages
ISBN:9781450368698
DOI:10.1145/3341162
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 September 2019

Check for updates

Author Tags

  1. channel state information (CSI)
  2. contactless sensing
  3. gesture recognition
  4. text input

Qualifiers

  • Demonstration

Funding Sources

  • Peking University Information Technology Institute (Tianjin Binhai)
  • National Natural Science Foundation of China

Conference

UbiComp '19

Acceptance Rates

Overall Acceptance Rate 764 of 2,912 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)13
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Device-Free Human Activity Recognition: A Systematic Literature ReviewIEEE Open Journal of Instrumentation and Measurement10.1109/OJIM.2024.35028854(1-34)Online publication date: 2025

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media