skip to main content
10.1145/3343031.3350866acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

PiTree: Practical Implementation of ABR Algorithms Using Decision Trees

Authors Info & Claims
Published:15 October 2019Publication History

ABSTRACT

Major commercial client-side video players employ adaptive bitrate (ABR) algorithms to improve user quality of experience (QoE). With the evolvement of ABR algorithms, increasingly complex methods such as neural networks have been adopted to pursue better performance. However, these complex methods are too heavyweight to be directly implemented in client devices, especially mobile phones with very limited resources. Existing solutions suffer from a trade-off between algorithm performance and deployment overhead. To make the implementation of sophisticated ABR algorithms practical, we propose PiTree, a general, high-performance and scalable framework that can faithfully convert sophisticated ABR algorithms into lightweight decision trees to reduce deployment overhead. We also provide a theoretical upper bound on the optimization loss during the conversion. Evaluation results on three representative ABR algorithms demonstrate that PiTree could faithfully convert ABR algorithms into decision trees with <3% average performance degradation. Moreover, comparing to original implementation solutions, PiTree could save operating expenses for large content providers.

References

  1. Chrome devtools. https://developers.google.com/web/tools/chrome-devtools/.Google ScholarGoogle Scholar
  2. Cplex optimizer. https://www.ibm.com/analytics/cplex-optimizer.Google ScholarGoogle Scholar
  3. Ec2 instance pricing -- amazon web services (aws). https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/.Google ScholarGoogle Scholar
  4. Mobile accounted for 62 percent of online video views. https://www.statista.com/statistics/444318/mobile-device-video-views-share/.Google ScholarGoogle Scholar
  5. Official youtube blog: With nearly 2 million concurrent viewers and over 3 million live watch hours, first presidential debate breaks political record. https://youtube.googleblog.com/2016/09/with-nearly-2-million-concurrent.html.Google ScholarGoogle Scholar
  6. Tornado web server. https://www.tornadoweb.org/.Google ScholarGoogle Scholar
  7. tsenart/vegeta: Http load testing tool and library. it's over 9000! https://github.com/tsenart/vegeta.Google ScholarGoogle Scholar
  8. Youtube. https://www.youtube.com/.Google ScholarGoogle Scholar
  9. Youtube revenue and usage statistics (2018) - business of apps. http://www.businessofapps.com/data/youtube-statistics/.Google ScholarGoogle Scholar
  10. Raw data - measuring broadband america. https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016, 2016.Google ScholarGoogle Scholar
  11. Dash.js. https://github.com/Dash-Industry-Forum/dash.js, 2018.Google ScholarGoogle Scholar
  12. gruntjs/grunt-contrib-uglify: Minify files with uglifyjs. https://github.com/gruntjs/grunt-contrib-uglify, 2019.Google ScholarGoogle Scholar
  13. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., et al. Tensorflow: A system for large-scale machine learning. In USENIX OSDI (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Akhtar, Z., Nam, Y. S., Govindan, R., Rao, S., Chen, J., Katz-Bassett, E., Ribeiro, B., Zhan, J., and Zhang, H. Oboe: auto-tuning video abr algorithms to network conditions. In ACM SIGCOMM (2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ba, J., and Caruana, R. Do deep nets really need to be deep? In NIPS (2014).Google ScholarGoogle Scholar
  16. Bastani, O., Pu, Y., and Solar-Lezama, A. Verifiable reinforcement learning via policy extraction. In NeurIPS (2018).Google ScholarGoogle Scholar
  17. Beben, A., Wisniewski, P., Batalla, J. M., and Krawiec, P. AbmaGoogle ScholarGoogle Scholar
  18. : lightweight and efficient algorithm for http adaptive streaming. In ACM MMSys (2016).Google ScholarGoogle Scholar
  19. Ben Mustafa, I., Nadeem, T., and Halepovic, E. Flexstream: Towards flexible adaptive video streaming on end devices using extreme sdn. In ACM MM (2018), pp. 555--563.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Bentaleb, A., Begen, A. C., Harous, S., and Zimmermann, R. A distributed approach for bitrate selection in http adaptive streaming. In ACM MM (2018), pp. 573--581.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Blockeel, H., and De Raedt, L. Top-down induction of first-order logical decision trees. Artificial intelligence 101, 1--2 (1998), 285--297.Google ScholarGoogle Scholar
  22. Bucilua, C., Caruana, R., and Niculescu-Mizil, A. Model compression. In ACM KDD (2006).Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Chen, W., Wilson, J., Tyree, S., Weinberger, K., and Chen, Y. Compressing neural networks with the hashing trick. In ICML (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127--138.Google ScholarGoogle ScholarCross RefCross Ref
  25. Cui, Y., Ooi, W. T., Liu, J., Zhang, X., Bentaleb, A., Zheng, K., and Li, Y. Acm multimedia 2019 grand challenge - live video streaming. https://www.aitrans.online/MMGC/, 2019.Google ScholarGoogle Scholar
  26. De Cicco, L., Caldaralo, V., Palmisano, V., and Mascolo, S. Elastic: A client-side controller for dynamic adaptive streaming over http (dash). In IEEE International Packet Video Workshop (2013).Google ScholarGoogle ScholarCross RefCross Ref
  27. De Cicco, L., Cilli, G., and Mascolo, S. Erudite: a deep neural network for optimal tuning of adaptive video streaming controllers. In ACM MMSys (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Dobrian, F., Sekar, V., Awan, A., Stoica, I., Joseph, D., Ganjam, A., Zhan, J., and Zhang, H. Understanding the impact of video quality on user engagement. In ACM SIGCOMM (2011).Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Friedman, J. H., Olshen, R. A., Stone, C. J., et al. Classification and regression trees. Belmont, CA: Wadsworth & Brooks (1984).Google ScholarGoogle Scholar
  30. Gama, J., Rocha, R., and Medas, P. Accurate decision trees for mining high-speed data streams. In ACM KDD (2003).Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ganjam, A., Siddiqui, F., Zhan, J., Liu, X., Stoica, I., Jiang, J., Sekar, V., and Zhang, H. C3: Internet-scale control plane for video quality optimization. In USENIX NSDI (2015), pp. 131--144.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Guo, W., Mu, D., Xu, J., Su, P., Wang, G., and Xing, X. Lemna: Explaining deep learning based security applications. In ACM CCS (2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Huang, T., Yao, X., Wu, C., Zhang, R.-X., and Sun, L. Tiyuntsong: A self-play reinforcement learning approach for abr video streaming. arXiv:1811.06166 (2018).Google ScholarGoogle Scholar
  34. Huang, T.-Y., Handigol, N., Heller, B., McKeown, N., and Johari, R. Confused, timid, and unstable: Picking a video streaming rate is hard. In ACM IMC (2012), pp. 225--238.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Huang, T.-Y., Johari, R., McKeown, N., Trunnell, M., and Watson, M. A buffer-based approach to rate adaptation: Evidence from a large video streaming service. In ACM SIGCOMM (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. Imitation learning: A survey of learning methods. ACM Comput. Surv. 50, 2 (Apr. 2017), 21:1--21:35.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Index, C. V. N. Forecast and methodology, 2016--2021. White Paper, June (2017).Google ScholarGoogle Scholar
  38. Jiang, J., Sekar, V., Milner, H., Shepherd, D., Stoica, I., and Zhang, H. Cfa: A practical prediction system for video qoe optimization. In USENIX NSDI (2016), pp. 137--150.Google ScholarGoogle Scholar
  39. Jiang, J., Sekar, V., and Zhang, H. Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive. In ACM CoNEXT (2012), pp. 97--108.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Kakade, S. M., and Tewari, A. On the generalization ability of online strongly convex programming algorithms. In NIPS (2008).Google ScholarGoogle Scholar
  41. Koller, R., and Williams, D. Will serverless end the dominance of linux in the cloud? In ACM HotOS (2017), pp. 169--173.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Krishnan, S. S., and Sitaraman, R. K. Video stream quality impacts viewer behavior: Inferring causality using quasi-experimental designs. In ACM IMC (2012), pp. 211--224.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Lane, N. D., Georgiev, P., and Qendro, L. Deepear: Robust smartphone audio sensing in unconstrained acoustic environments using deep learning. In ACM Ubicomp (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. Pruning filters for efficient convnets. In ICLR (2017).Google ScholarGoogle Scholar
  45. Li, Z., Zhu, X., Gahm, J., Pan, R., Hu, H., Begen, A. C., and Oran, D. Probe and adapt: Rate adaptation for http video streaming at scale. IEEE Journal on Selected Areas in Communications 32, 4 (2014), 719--733.Google ScholarGoogle ScholarCross RefCross Ref
  46. Liu, J., Tao, X., and Lu, J. Qoe-oriented rate adaptation for dash with enhanced deep q-learning. IEEE Access 7 (2019), 8454--8469.Google ScholarGoogle ScholarCross RefCross Ref
  47. Lundberg, S. M., and Lee, S.-I. A unified approach to interpreting model predictions. In NIPS (2017).Google ScholarGoogle Scholar
  48. Mao, H., Netravali, R., and Alizadeh, M. Neural adaptive video streaming with pensieve. In ACM SIGCOMM (2017), pp. 197--210.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Netravali, R., Sivaraman, A., Das, S., Goyal, A., Winstein, K., Mickens, J., and Balakrishnan, H. Mahimahi: Accurate record-and-replay for HTTP. In USENIX ATC (2015), pp. 417--429.Google ScholarGoogle Scholar
  50. Ramos-Mu noz, J. J., Prados-Garzon, J., Ameigeiras, P., Navarro-Ortiz, J., and López-Soler, J. M. Characteristics of mobile youtube traffic. IEEE Wireless Communications 21, 1 (2014), 18--25.Google ScholarGoogle Scholar
  51. Ribeiro, M. T., Singh, S., and Guestrin, C. Why should i trust you?: Explaining the predictions of any classifier. In ACM KDD (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Riiser, H., Vigmostad, P., Griwodz, C., and Halvorsen, P. Commute path bandwidth traces from 3g networks: Analysis and applications. In ACM MMSys (2013), pp. 114--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Ross, S., Gordon, G., and Bagnell, D. A reduction of imitation learning and structured prediction to no-regret online learning. In AISTATS (2011).Google ScholarGoogle Scholar
  54. Sengupta, S., Ganguly, N., Chakraborty, S., and De, P. Hotdash: Hotspot aware adaptive video streaming using deep reinforcement learning. In IEEE ICNP (2018), pp. 165--175.Google ScholarGoogle ScholarCross RefCross Ref
  55. Smilkov, D., Thorat, N., Assogba, Y., Nicholson, C., Kreeger, N., Yu, P., Cai, S., Nielsen, E., et al. Tensorflow.js: Machine learning for the web and beyond (https://js.tensorflow.org/). In SysML (2019).Google ScholarGoogle Scholar
  56. Spiteri, K., Sitaraman, R., and Sparacio, D. From theory to practice: improving bitrate adaptation in the dash reference player. In ACM MMSys (2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Spiteri, K., Urgaonkar, R., and Sitaraman, R. K. Bola: Near-optimal bitrate adaptation for online videos. In IEEE INFOCOM (2016).Google ScholarGoogle Scholar
  58. Stockhammer, T. Dynamic adaptive streaming over http -- standards and design principles. In ACM MMSys (2011), pp. 133--144.Google ScholarGoogle Scholar
  59. Sun, Y., Yin, X., Jiang, J., Sekar, V., Lin, F., Wang, N., Liu, T., and Sinopoli, B. Cs2p: Improving video bitrate selection and adaptation with data-driven throughput prediction. In ACM SIGCOMM (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri, S. Programmatically interpretable reinforcement learning. In ICML (2018).Google ScholarGoogle Scholar
  61. Wang, B., and Ren, F. Towards forward-looking online bitrate adaptation for dash. In ACM MM (2017), pp. 1122--1129.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Wang, C., Rizk, A., and Zink, M. Squad: A spectrum-based quality adaptation for dynamic adaptive streaming over http. In ACM MMSys (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Wu, J., Cheng, B., Yuen, C., Shang, Y., and Chen, J. Distortion-aware concurrent multipath transfer for mobile video streaming in heterogeneous wireless networks. IEEE Transactions on Mobile Computing 14, 4 (2015), 688--701.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Yadav, P. K., Shafiei, A., and Ooi, W. T. Quetra: A queuing theory approach to dash rate adaptation. In ACM MM (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Yeo, H., Jung, Y., Kim, J., Shin, J., and Han, D. Neural adaptive content-aware internet video delivery. In USENIX OSDI (2018).Google ScholarGoogle Scholar
  66. Yin, X., Jindal, A., Sekar, V., and Sinopoli, B. A control-theoretic approach for dynamic adaptive video streaming over http. In ACM SIGCOMM (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Zheng, Y., Liu, Z., You, X., Xu, Y., and Jiang, J. Demystifying deep learning in networking. In ACM APNet (2018).Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. PiTree: Practical Implementation of ABR Algorithms Using Decision Trees

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        MM '19: Proceedings of the 27th ACM International Conference on Multimedia
        October 2019
        2794 pages
        ISBN:9781450368896
        DOI:10.1145/3343031

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 October 2019

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        MM '19 Paper Acceptance Rate252of936submissions,27%Overall Acceptance Rate995of4,171submissions,24%

        Upcoming Conference

        MM '24
        MM '24: The 32nd ACM International Conference on Multimedia
        October 28 - November 1, 2024
        Melbourne , VIC , Australia

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader