skip to main content
10.1145/3343031.3350871acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

Emotion Recognition using Multimodal Residual LSTM Network

Published:15 October 2019Publication History

ABSTRACT

Various studies have shown that the temporal information captured by conventional long-short-term memory (LSTM) networks is very useful for enhancing multimodal emotion recognition using encephalography (EEG) and other physiological signals. However, the dependency among multiple modalities and high-level temporal-feature learning using deeper LSTM networks is yet to be investigated. Thus, we propose a multimodal residual LSTM (MMResLSTM) network for emotion recognition. The MMResLSTM network shares the weights across the modalities in each LSTM layer to learn the correlation between the EEG and other physiological signals. It contains both the spatial shortcut paths provided by the residual network and temporal shortcut paths provided by LSTM for efficiently learning emotion-related high-level features. The proposed network was evaluated using a publicly available dataset for EEG-based emotion recognition, DEAP. The experimental results indicate that the proposed MMResLSTM network yielded a promising result, with a classification accuracy of 92.87% for arousal and 92.30% for valence.

References

  1. Salma Alhagry, Aly Aly, and Reda El-Khoribi. 2017. Emotion Recognition based on EEG using LSTM Recurrent Neural Network. International Journal of Advanced Computer Science and Applications 8, 10 (2017). https://doi.org/10.14569/IJACSA.2017.081046Google ScholarGoogle ScholarCross RefCross Ref
  2. Mouhannad Ali, Fadi Al Machot, Ahmad Haj Mosa, and Kyandoghere Kyamakya. 2016. A Novel EEG-based Emotion Recognition Approach for e-Healthcare Applications. In Proceedings of the 31st Annual ACM Symposium on Applied Computing (SAC '16). ACM, New York, NY, USA, 162--164. https://doi.org/10.1145/2851613.2851916Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Pouya Bashivan, Irina Rish, Mohammed Yeasin, and Noel Codella. 2016. Learning representations from EEG with deep recurrent-convolutional neural networks. In International Conference on Learning Representations (ICLR).Google ScholarGoogle Scholar
  4. H. Becker, J. Fleureau, P. Guillotel, F. Wendling, I. Merlet, and L. Albera. 2018. Emotion recognition based on high-resolution EEG recordings and reconstructed brain sources. IEEE Transactions on Affective Computing(2018), 1--1. https://doi.org/10.1109/TAFFC.2017.2768030Google ScholarGoogle Scholar
  5. Carlos Busso, Zhigang Deng, Serdar Yildirim, Murtaza Bulut, Chul Min Lee,Abe Kazemzadeh, Sungbok Lee, Ulrich Neumann, and Shrikanth Narayanan. 2004. Analysis of Emotion Recognition Using Facial Expressions, Speech and Multimodal Information. In Proceedings of the 6th International Conference on Multimodal Interfaces (ICMI '04). ACM, New York, NY, USA, 205--211. https://doi.org/10.1145/1027933.1027968Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. H. Candra, M. Yuwono, R. Chai, A. Handojoseno, I. Elamvazuthi, H. T. Nguyen,and S. Su. 2015. Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC). 7250--7253. https://doi.org/10.1109/EMBC.2015.7320065Google ScholarGoogle Scholar
  7. Weitong Chen, Sen Wang, Xiang Zhang, Lina Yao, Lin Yue, Buyue Qian, and Xue Li. 2018. EEG-based Motion Intention Recognition via Multi-task RNNs. 279--287. https://doi.org/10.1137/1.9781611975321.32arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611975321.32Google ScholarGoogle Scholar
  8. Rahma Fourati, Boudour Ammar, Chaouki Aouiti, Javier Sanchez-Medina, and Adel M. Alimi. 2017. Optimized Echo State Network with Intrinsic Plasticity for EEG-Based Emotion Recognition. In Neural Information Processing, Derong Liu, Shengli Xie, Yuanqing Li, Dongbin Zhao, and El-Sayed M. El-Alfy (Eds.). Springer International Publishing, Cham, 718--727. https://doi.org/10.1007/978--3--319--70096-0_73Google ScholarGoogle Scholar
  9. Beatriz García-Martínez, Arturo Martínez-Rodrigo, Roberto Zangróniz, José Manuel Pastor, and Raúl Alcaraz. 2017. Symbolic Analysis of Brain Dynamics Detects Negative Stress. Entropy 19, 5 (2017). https://doi.org/10.3390/e19050196Google ScholarGoogle Scholar
  10. Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech recognition with deep recurrent neural networks. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). IEEE, 6645--6649.Google ScholarGoogle ScholarCross RefCross Ref
  11. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770--778. https://doi.org/10.1109/CVPR.2016.90Google ScholarGoogle Scholar
  12. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.Neural Comput. 9, 8 (Nov. 1997), 1735--1780. https://doi.org/10.1162/neco.1997.9.8.1735Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning- Volume 37 (ICML'15). JMLR.org, 448--456. http://dl.acm.org/citation.cfm?id=3045118.3045167Google ScholarGoogle Scholar
  14. S. Katsigiannis and N. Ramzan. 2018. DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals From Wireless Low-cost Off-the-Shelf Devices. IEEE Journal of Biomedical and Health Informatics 22, 1 (Jan 2018),98--107. https://doi.org/10.1109/JBHI.2017.2688239Google ScholarGoogle ScholarCross RefCross Ref
  15. B. H. Kim and S. Jo. 2018. Deep Physiological Affect Network for the Recognition of Human Emotions. IEEE Transactions on Affective Computing(2018), 1--1. https://doi.org/10.1109/TAFFC.2018.2790939Google ScholarGoogle Scholar
  16. S. Koelstra, C. Muhl, M. Soleymani, J. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras. 2012. DEAP: A Database for Emotion Analysis using Physiological Signals. IEEE Transactions on Affective Computing3, 1 (Jan 2012), 18--31. https://doi.org/10.1109/T-AFFC.2011.15Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. arXiv preprint arXiv:1607.06450(2016).Google ScholarGoogle Scholar
  18. Wenqian Lin, Chao Li, and Shouqian Sun. 2017. Deep Convolutional NeuralNetwork for Emotion Recognition Using EEG and Peripheral Physiological Signal. In Image and Graphics, Yao Zhao, Xiangwei Kong, and David Taubman(Eds.). Springer International Publishing, Cham, 385--394. https://doi.org/10.1007/978--3--319--71589--6_33Google ScholarGoogle Scholar
  19. Wei Liu, Wei-Long Zheng, and Bao-Liang Lu. 2016. Emotion Recognition Using Multimodal Deep Learning. In Proceedings of the 23rd International Conference onNeural Information Processing - Volume 9948. Springer-Verlag, Berlin, Heidelberg, 521--529. https://doi.org/10.1007/978--3--319--46672--9_58Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Y. Liu and O. Sourina. 2013. EEG Databases for Emotion Recognition. In 2013 International Conference on Cyberworlds. 302--309. https://doi.org/10.1109/CW.2013.52Google ScholarGoogle Scholar
  21. Yifei Lu, Wei-Long Zheng, Binbin Li, and Bao-Liang Lu. 2015. Combining Eye Movements and EEG to Enhance Emotion Recognition. In Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI'15). AAAI Press, 1170--1176. http://dl.acm.org/citation.cfm?id=2832249.2832411Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pallavi Pandey and K. R. Seeja. 2019. Emotional State Recognition with EEGSignals Using Subject Independent Approach. InData Science and Big Data Analytics, Durgesh Kumar Mishra, Xin-She Yang, and Aynur Unal (Eds.). Springer Singapore, Singapore, 117--124. https://doi.org/10.1007/978--981--10--7641--1_10Google ScholarGoogle Scholar
  23. V. Pham, T. Bluche, C. Kermorvant, and J. Louradour. 2014. Dropout Improves Recurrent Neural Networks for Handwriting Recognition. In 2014 14th Inter-national Conference on Frontiers in Handwriting Recognition. 285--290. https://doi.org/10.1109/ICFHR.2014.55Google ScholarGoogle Scholar
  24. L. Piho and T. Tjahjadi. 2018. A mutual information based adaptive windowing of informative EEG for emotion recognition. IEEE Transactions on Affective Computing(2018), 1--1. https://doi.org/10.1109/TAFFC.2018.2840973Google ScholarGoogle Scholar
  25. Jie-Lin Qiu, Wei Liu, and Bao-Liang Lu. 2018. Multi-view Emotion Recognition Using Deep Canonical Correlation Analysis. In Proceedings of the 25th International Conference on Neural Information Processing (ICONIP'18). 221--231.https://doi.org/10.1007/978--3-030-04221--9_20Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jimmy Ren, Yongtao Hu, Yu-Wing Tai, Chuan Wang, Li Xu, Wenxiu Sun, and Qiong Yan. 2016. Look, Listen and Learn - a Multimodal LSTM for Speaker Identification. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI'16). AAAI Press, 3581--3587. http://dl.acm.org/citation.cfm?id=3016387.3016407Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Soleymani, S. Asghari-Esfeden, M. Pantic, and Y. Fu. 2014. Continuous emotion detection using EEG signals and facial expressions. In 2014 IEEE International Conference on Multimedia and Expo (ICME). 1--6. https://doi.org/10.1109/ICME.2014.6890301Google ScholarGoogle ScholarCross RefCross Ref
  28. M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic. 2012. A Multimodal Databasefor Affect Recognition and Implicit Tagging. IEEE Transactions on Affective Computing 3, 1 (Jan 2012), 42--55. https://doi.org/10.1109/T-AFFC.2011.25Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. 2015. Training Very Deep Networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 (NIPS'15). MIT Press, Cambridge, MA, USA, 2377--2385. http://dl.acm.org/citation.cfm?id=2969442.2969505Google ScholarGoogle Scholar
  30. Akara Supratak, Hao Dong, Chao Wu, and Yike Guo. 2017. DeepSleepNet: aModel for Automatic Sleep Stage Scoring based on Raw Single-Channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering 25, 11 (Nov 2017), 1998--2008. https://doi.org/10.1109/TNSRE.2017.2721116Google ScholarGoogle ScholarCross RefCross Ref
  31. C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,V. Vanhoucke, and A. Rabinovich. 2015. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1--9. https://doi.org/10.1109/CVPR.2015.7298594Google ScholarGoogle ScholarCross RefCross Ref
  32. Hao Tang, Wei Liu, Wei-Long Zheng, and Bao-Liang Lu. 2017. Multimodal Emotion Recognition Using Deep Neural Networks. In Neural Information Processing, Derong Liu, Shengli Xie, Yuanqing Li, Dongbin Zhao, and El-Sayed M. El-Alfy(Eds.). Springer International Publishing, Cham, 811--819. https://doi.org/10.1007/978--3--319--70093--9_86Google ScholarGoogle Scholar
  33. Gyanendra K. Verma and Uma Shanker Tiwary. 2017. Affect Representation and Recognition in 3D Continuous Valence--arousal--dominance Space.Multimedia Tools Appl.76, 2 (Jan. 2017), 2159--2183. https://doi.org/10.1007/s11042-015--3119-yGoogle ScholarGoogle Scholar
  34. O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. 2015. Show and tell: A neuralimage caption generator. In 2015 IEEE Conference on Computer Vision and PatternRecognition (CVPR). 3156--3164. https://doi.org/10.1109/CVPR.2015.7298935Google ScholarGoogle Scholar
  35. Xiao-Wei Wang, Dan Nie, and Bao-Liang Lu. 2014. Emotional state classification from EEG data using machine learning approach. Neurocomputing 129 (Apr.2014), 94--106. https://doi.org/10.1016/j.neucom.2013.06.046Google ScholarGoogle Scholar
  36. Zhong Yin, Mengyuan Zhao, Yongxiong Wang, Jingdong Yang, and Jianhua Zhang. 2017. Recognition of emotions using multimodal physiological signalsand an ensemble deep learning model. Computer Methods and Programs in Biomedicine140 (2017), 93--110. https://doi.org/10.1016/j.cmpb.2016.12.005Google ScholarGoogle Scholar
  37. Wei-Long Zheng, Wei Liu, Yifei Lu, Bao-Liang Lu, and Andrzej Cichocki. 2018. Emotionmeter: A multimodal framework for recognizing human emotions. IEEE Transactions on Cybernetics 49, 3 (Feb. 2018), 1110--1122. https://doi.org/10.1109/TCYB.2018.2797176Google ScholarGoogle Scholar
  38. Wei-Long Zheng and Bao-Liang Lu. 2015. Investigating Critical Frequency Bandsand Channels for EEG-Based Emotion Recognition with Deep Neural Networks.IEEE Transactions on Autonomous Mental Development 7, 3 (Sep. 2015), 162--175.https://doi.org/10.1109/TAMD.2015.2431497Google ScholarGoogle Scholar
  39. Wei-Long Zheng, Jia-Yi Zhu, and Bao-Liang Lu. 2018. Identifying Stable Patternsover Time for Emotion Recognition from EEG. IEEE Transactions on Affective Computing(2018), 1--1. https://doi.org/10.1109/TAFFC.2017.2712143Google ScholarGoogle Scholar
  40. Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmidhuber. 2017. Recurrent Highway Networks. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, International Convention Centre, Sydney, Australia, 4189--4198. http://proceedings.mlr.press/v70/zilly17a.htmlGoogle ScholarGoogle Scholar

Index Terms

  1. Emotion Recognition using Multimodal Residual LSTM Network

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          MM '19: Proceedings of the 27th ACM International Conference on Multimedia
          October 2019
          2794 pages
          ISBN:9781450368896
          DOI:10.1145/3343031

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 15 October 2019

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          MM '19 Paper Acceptance Rate252of936submissions,27%Overall Acceptance Rate995of4,171submissions,24%

          Upcoming Conference

          MM '24
          MM '24: The 32nd ACM International Conference on Multimedia
          October 28 - November 1, 2024
          Melbourne , VIC , Australia

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader