skip to main content
10.1145/3345768.3355931acmconferencesArticle/Chapter ViewAbstractPublication PagesmswimConference Proceedingsconference-collections
research-article

HiPR: High-Precision UWB Ranging for Sensor Networks

Published: 25 November 2019 Publication History

Abstract

We present a distance estimation technique based on ultra-wideband time-of-arrival measurements and assess it with IEEE 802.15.4-2011 devices by Decawave. Experiments show that our technique is about 30 times faster than Decawave's out-of-the-box solution, which can be exploited to improve the precision by one order of magnitude.

References

[1]
Standard for local and metropolitan area networks-Part 15.4: Low-Rate Wireless Personal Area Networks. IEEE Std 802.15.4, Sep. 2011.
[2]
K. Al Nuaimi and H. Kamel. A survey of indoor positioning systems and algorithms. In Proc. IEEE Int. Conf. on Innovations in Information Technology (IIT), pages 185--190, 2011.
[3]
A. Alarifi, A. Al-Salman, M. Alsaleh, A. Alnafessah, S. Al-Hadhrami, M. Al-Ammar, and H. Al-Khalifa. Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors, 16(5):707, 2016.
[4]
K. Balac, M. Akhmedov, M. Prevostini, and M. Malek. Topology optimization of wireless localization networks. In Proc. European Wireless, 2016.
[5]
J. Chóliz, M. Eguizabal, Á. Hernández-Solana, and A. Valdovinos. Comparison of algorithms for UWB indoor location and tracking systems. In Proc. IEEE Int. Conf. on Vehicular Technology Conference (VTC), pages 1--5, 2011.
[6]
J. Collin, O. Mezentsev, G. Lachapelle, et al. Indoor positioning system using accelerometry and high accuracy heading sensors. In Proc. ION GPS/GNSS Conf., pages 9--12, 2003.
[7]
DecaWave. APS013 Application Note: The Implementation of Two-way Ranging with the DW1000, Version 2.2. Technical report, 2015.
[8]
DecaWave. DW1000 User Manual: How to Use, Configure and Program the DW1000 UWB Transceiver, Version 2.05. Technical report, 2015.
[9]
DecaWave. APS014 Application Note: Antenna Delay Calibration of DW1000 Based Products and Systems, Version 1.2. Technical report, 2018.
[10]
A. Duru, E. cS ehirli, and .I. Kabalci. Ultra-wideband positioning system using TWR and lateration methods. In Proc. ACM Int. Conf. Eng. & MIS, page 58, 2018.
[11]
W. Gerok, J. Peissig, and T. Kaiser. TDOA assisted RSSD localization in UWB. In Proc. IEEE Workshop on Positioning, Navigation and Communication, pages 196--200, 2012.
[12]
F. Hartmann, C. Enders, and W. Stork. Ranging errors in uwb networks and their detectability. In Proc. IEEE Int. Conf. on Telecommunications and Signal Processing (TSP), pages 194--198, 2016.
[13]
M. Hedley and Q. Zhai. Wireless sensor network using hybrid tdoa/rss tracking of uncooperative targets. In Proc. IEEE Int. Symp. on Wireless Personal Multimedia Communications (WPMC), pages 385--390, 2014.
[14]
K. A. Horváth, G. Ill, and Á. Milánkovich. Passive extended double-sided two-way ranging algorithm for UWB positioning. In Proc. IEEE Int. Conf. on Ubiquitous and Future Networks (ICUFN), pages 482--487. IEEE, 2017.
[15]
F. Ijaz, H. K. Yang, A. W. Ahmad, and C. Lee. Indoor positioning: A review of indoor ultrasonic positioning systems. In Proc. IEEE Int. Conf. on Advanced Communications Technology (ICACT), pages 1146--1150, 2013.
[16]
G. Jekabsons, V. Kairish, and V. Zuravlyov. An analysis of Wi-Fi based indoor positioning accuracy. Scientific Journal of Riga Technical University, 44(1):131--137, 2011.
[17]
A. R. Jiménez and F. Seco. Comparing decawave and bespoon uwb location systems: Indoor/outdoor performance analysis. In Proc. IEEE Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), pages 1--8, 2016.
[18]
Joon-Yong Lee and R. A. Scholtz. Ranging in a dense multipath environment using an uwb radio link. IEEE Journal on Selected Areas in Communications, 20(9):1677--1683, Dec 2002.
[19]
J. Ko et al. Target tracking algorithms for UWB radar network. In Proc. IEEE Int. Conf. Radioelektronika, pages 319--324, 2016.
[20]
M. Laaraiedh, S. Avrillon, and B. Uguen. Hybrid data fusion techniques for localization in UWB networks. In Proc. IEEE Workshop on Positioning, Navigation and Communication, pages 51--57, 2009.
[21]
D. Macii, A. Colombo, P. Pivato, and D. Fontanelli. A data fusion technique for wireless ranging performance improvement. IEEE Trans. Instrumentation and Measurement, 62(1):27--37, 2013.
[22]
M. Malajner, P. Planinvs ivc, and D. Gleich. UWB ranging accuracy. In Proc. IEEE Int. Conf. on Systems, Signals and Image Processing (IWSSIP), pages 61--64, 2015.
[23]
R. Mautz. Indoor positioning technologies. Technical report, ETH Zurich, Department of Civil, Environmental and Geomatic Engineering, 2012.
[24]
D. Neuhold, J. F. Schmidt, C. Bettstetter, J. Klaue, and D. Schupke. Experiments with UWB aircraft sensor networks. In Proc. IEEE INFOCOM Workshops, San Francisco, CA, Apr. 2016.
[25]
D. Neuhold, J. F. Schmidt, C. Bettstetter, J. Sebald, and J. Klaue. UWB connectivity inside a space launch vehicle. In Proc. European Wireless, Aarhus, Denmark, May 2019.
[26]
D. Neuhold, J. F. Schmidt, J. Klaue, D. Schupke, and C. Bettstetter. Experimental study of packet loss in a UWB sensor network for aircraft. In Proc. ACM Intern. Conf. on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), pages 137--142, Miami Beach, FL, USA, Nov. 2017.
[27]
L. Oliveira, C. Di Franco, T. E. Abrudan, and L. Almeida. Fusing time-of-flight and received signal strength for adaptive radio-frequency ranging. In Proc. IEEE Int. Conf. on Advanced Robotics (ICAR), pages 1--6, 2013.
[28]
A. R. J. Ruiz and F. S. Granja. Comparing ubisense, bespoon, and decawave uwb location systems: Indoor performance analysis. IEEE Trans. Instrumentation and Measurement, 66(8):2106--2117, 2017.
[29]
C. L. Sang, M. Adams, T. Hörmann, M. Hesse, M. Porrmann, and U. Rückert. An analytical study of time of flight error estimation in two-way ranging methods. In Proc. IEEE Int. Conf. Indoor Pos. and Indoor Navigation (IPIN), pages 1--8, 2018.
[30]
J. Sidorenkoab, V. Schatza, N. Scherer-Negenborna, M. Arensa, and U. Hugentobler. Decawave UWB clock drift correction and powerself-calibration. ArXiv preprint: 1902.11085, 2019.
[31]
B. Silva, Z. Pang, J. Åkerberg, J. Neander, and G. Hancke. Experimental study of uwb-based high precision localization for industrial applications. In Proc. IEEE Int. Conf. on Ultra-WideBand (ICUWB), pages 280--285, 2014.
[32]
Z. Song, G. Jiang, and C. Huang. A survey on indoor positioning technologies. In Proc. Int. Conf. on Theoretical and Mathematical Foundations of Computer Science, pages 198--206. Springer, 2011.
[33]
S. Tewes, L. Schwoerer, and P. Bosselmann. Designing a basic IR-UWB-RTLS-raw-data position estimation utilizing TWR. In Proc. Int. Conf. on European Conference on Smart Objects, Systems and Technologies (Smart SysTech), 2017.
[34]
J. Wang, A. K. Raja, and Z. Pang. Prototyping and experimental comparison of IR-UWB based high precision localization technologies. In Proc. IEEE Int. Conf. on on Ubiquitous Intelligence and Computing and IEEE Int. Conf. on Autonomic and Trusted Computing and Proc. IEEE Int. Conf. on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), pages 1187--1192, 2015.
[35]
G. Xinzhe, S. Guo, Q. Chen, and L. Han. A new calibration method of UWB antenna delay based on the ADS-TWR. In Proc. IEEE Chinese Control Conference (CCC), 2018.
[36]
A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen, R. Raulefs, and E. Aboutanios. Recent advances in indoor localization: A survey on theoretical approaches and applications. IEEE Communications Surveys & Tutorials, 19(2):1327--1346, 2016.
[37]
F. Zafari, A. Gkelias, and K. K. Leung. A survey of indoor localization systems and technologies. IEEE Communications Surveys & Tutorials, (1), 2019.

Cited By

View all
  • (2023)RoVaRProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/35808547:1(1-25)Online publication date: 28-Mar-2023
  • (2022)HiPR+: A Protocol for Centimeter 3D Localization based on UWBProceedings of the 25th International ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems10.1145/3551659.3559043(181-188)Online publication date: 24-Oct-2022
  • (2022)Scalable and Modular Ultra-Wideband Aided Inertial Navigation2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS47612.2022.9981937(2423-2430)Online publication date: 23-Oct-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
MSWIM '19: Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
November 2019
340 pages
ISBN:9781450369046
DOI:10.1145/3345768
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 November 2019

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. localization
  2. ranging
  3. ultra-wideband
  4. uwb

Qualifiers

  • Research-article

Funding Sources

  • University of Klagenfurt
  • Federation of Austrian Industries and the Carinthia Economic Chamber
  • Marshall Plan Foundation

Conference

MSWiM '19
Sponsor:

Acceptance Rates

Overall Acceptance Rate 398 of 1,577 submissions, 25%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)16
  • Downloads (Last 6 weeks)2
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2023)RoVaRProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/35808547:1(1-25)Online publication date: 28-Mar-2023
  • (2022)HiPR+: A Protocol for Centimeter 3D Localization based on UWBProceedings of the 25th International ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems10.1145/3551659.3559043(181-188)Online publication date: 24-Oct-2022
  • (2022)Scalable and Modular Ultra-Wideband Aided Inertial Navigation2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS47612.2022.9981937(2423-2430)Online publication date: 23-Oct-2022
  • (2022)Towards an intelligent assistive system based on augmented reality and serious gamesEntertainment Computing10.1016/j.entcom.2021.10045840(100458)Online publication date: Jan-2022
  • (2020)HTC Vive as a Ground-Truth System for Anchor-Based Indoor Localization2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)10.1109/ICUMT51630.2020.9222439(214-221)Online publication date: Oct-2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media