skip to main content
10.1145/3345768.3355931acmconferencesArticle/Chapter ViewAbstractPublication PagesmswimConference Proceedingsconference-collections
research-article

HiPR: High-Precision UWB Ranging for Sensor Networks

Published:25 November 2019Publication History

ABSTRACT

We present a distance estimation technique based on ultra-wideband time-of-arrival measurements and assess it with IEEE 802.15.4-2011 devices by Decawave. Experiments show that our technique is about 30 times faster than Decawave's out-of-the-box solution, which can be exploited to improve the precision by one order of magnitude.

References

  1. Standard for local and metropolitan area networks-Part 15.4: Low-Rate Wireless Personal Area Networks. IEEE Std 802.15.4, Sep. 2011.Google ScholarGoogle Scholar
  2. K. Al Nuaimi and H. Kamel. A survey of indoor positioning systems and algorithms. In Proc. IEEE Int. Conf. on Innovations in Information Technology (IIT), pages 185--190, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Alarifi, A. Al-Salman, M. Alsaleh, A. Alnafessah, S. Al-Hadhrami, M. Al-Ammar, and H. Al-Khalifa. Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors, 16(5):707, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  4. K. Balac, M. Akhmedov, M. Prevostini, and M. Malek. Topology optimization of wireless localization networks. In Proc. European Wireless, 2016.Google ScholarGoogle Scholar
  5. J. Chóliz, M. Eguizabal, Á. Hernández-Solana, and A. Valdovinos. Comparison of algorithms for UWB indoor location and tracking systems. In Proc. IEEE Int. Conf. on Vehicular Technology Conference (VTC), pages 1--5, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. Collin, O. Mezentsev, G. Lachapelle, et al. Indoor positioning system using accelerometry and high accuracy heading sensors. In Proc. ION GPS/GNSS Conf., pages 9--12, 2003.Google ScholarGoogle Scholar
  7. DecaWave. APS013 Application Note: The Implementation of Two-way Ranging with the DW1000, Version 2.2. Technical report, 2015.Google ScholarGoogle Scholar
  8. DecaWave. DW1000 User Manual: How to Use, Configure and Program the DW1000 UWB Transceiver, Version 2.05. Technical report, 2015.Google ScholarGoogle Scholar
  9. DecaWave. APS014 Application Note: Antenna Delay Calibration of DW1000 Based Products and Systems, Version 1.2. Technical report, 2018.Google ScholarGoogle Scholar
  10. A. Duru, E. cS ehirli, and .I. Kabalci. Ultra-wideband positioning system using TWR and lateration methods. In Proc. ACM Int. Conf. Eng. & MIS, page 58, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. W. Gerok, J. Peissig, and T. Kaiser. TDOA assisted RSSD localization in UWB. In Proc. IEEE Workshop on Positioning, Navigation and Communication, pages 196--200, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  12. F. Hartmann, C. Enders, and W. Stork. Ranging errors in uwb networks and their detectability. In Proc. IEEE Int. Conf. on Telecommunications and Signal Processing (TSP), pages 194--198, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Hedley and Q. Zhai. Wireless sensor network using hybrid tdoa/rss tracking of uncooperative targets. In Proc. IEEE Int. Symp. on Wireless Personal Multimedia Communications (WPMC), pages 385--390, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  14. K. A. Horváth, G. Ill, and Á. Milánkovich. Passive extended double-sided two-way ranging algorithm for UWB positioning. In Proc. IEEE Int. Conf. on Ubiquitous and Future Networks (ICUFN), pages 482--487. IEEE, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  15. F. Ijaz, H. K. Yang, A. W. Ahmad, and C. Lee. Indoor positioning: A review of indoor ultrasonic positioning systems. In Proc. IEEE Int. Conf. on Advanced Communications Technology (ICACT), pages 1146--1150, 2013.Google ScholarGoogle Scholar
  16. G. Jekabsons, V. Kairish, and V. Zuravlyov. An analysis of Wi-Fi based indoor positioning accuracy. Scientific Journal of Riga Technical University, 44(1):131--137, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  17. A. R. Jiménez and F. Seco. Comparing decawave and bespoon uwb location systems: Indoor/outdoor performance analysis. In Proc. IEEE Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), pages 1--8, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  18. Joon-Yong Lee and R. A. Scholtz. Ranging in a dense multipath environment using an uwb radio link. IEEE Journal on Selected Areas in Communications, 20(9):1677--1683, Dec 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Ko et al. Target tracking algorithms for UWB radar network. In Proc. IEEE Int. Conf. Radioelektronika, pages 319--324, 2016.Google ScholarGoogle Scholar
  20. M. Laaraiedh, S. Avrillon, and B. Uguen. Hybrid data fusion techniques for localization in UWB networks. In Proc. IEEE Workshop on Positioning, Navigation and Communication, pages 51--57, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  21. D. Macii, A. Colombo, P. Pivato, and D. Fontanelli. A data fusion technique for wireless ranging performance improvement. IEEE Trans. Instrumentation and Measurement, 62(1):27--37, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. Malajner, P. Planinvs ivc, and D. Gleich. UWB ranging accuracy. In Proc. IEEE Int. Conf. on Systems, Signals and Image Processing (IWSSIP), pages 61--64, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  23. R. Mautz. Indoor positioning technologies. Technical report, ETH Zurich, Department of Civil, Environmental and Geomatic Engineering, 2012.Google ScholarGoogle Scholar
  24. D. Neuhold, J. F. Schmidt, C. Bettstetter, J. Klaue, and D. Schupke. Experiments with UWB aircraft sensor networks. In Proc. IEEE INFOCOM Workshops, San Francisco, CA, Apr. 2016.Google ScholarGoogle ScholarCross RefCross Ref
  25. D. Neuhold, J. F. Schmidt, C. Bettstetter, J. Sebald, and J. Klaue. UWB connectivity inside a space launch vehicle. In Proc. European Wireless, Aarhus, Denmark, May 2019.Google ScholarGoogle Scholar
  26. D. Neuhold, J. F. Schmidt, J. Klaue, D. Schupke, and C. Bettstetter. Experimental study of packet loss in a UWB sensor network for aircraft. In Proc. ACM Intern. Conf. on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), pages 137--142, Miami Beach, FL, USA, Nov. 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. L. Oliveira, C. Di Franco, T. E. Abrudan, and L. Almeida. Fusing time-of-flight and received signal strength for adaptive radio-frequency ranging. In Proc. IEEE Int. Conf. on Advanced Robotics (ICAR), pages 1--6, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. R. J. Ruiz and F. S. Granja. Comparing ubisense, bespoon, and decawave uwb location systems: Indoor performance analysis. IEEE Trans. Instrumentation and Measurement, 66(8):2106--2117, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  29. C. L. Sang, M. Adams, T. Hörmann, M. Hesse, M. Porrmann, and U. Rückert. An analytical study of time of flight error estimation in two-way ranging methods. In Proc. IEEE Int. Conf. Indoor Pos. and Indoor Navigation (IPIN), pages 1--8, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. Sidorenkoab, V. Schatza, N. Scherer-Negenborna, M. Arensa, and U. Hugentobler. Decawave UWB clock drift correction and powerself-calibration. ArXiv preprint: 1902.11085, 2019.Google ScholarGoogle Scholar
  31. B. Silva, Z. Pang, J. Åkerberg, J. Neander, and G. Hancke. Experimental study of uwb-based high precision localization for industrial applications. In Proc. IEEE Int. Conf. on Ultra-WideBand (ICUWB), pages 280--285, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  32. Z. Song, G. Jiang, and C. Huang. A survey on indoor positioning technologies. In Proc. Int. Conf. on Theoretical and Mathematical Foundations of Computer Science, pages 198--206. Springer, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  33. S. Tewes, L. Schwoerer, and P. Bosselmann. Designing a basic IR-UWB-RTLS-raw-data position estimation utilizing TWR. In Proc. Int. Conf. on European Conference on Smart Objects, Systems and Technologies (Smart SysTech), 2017.Google ScholarGoogle Scholar
  34. J. Wang, A. K. Raja, and Z. Pang. Prototyping and experimental comparison of IR-UWB based high precision localization technologies. In Proc. IEEE Int. Conf. on on Ubiquitous Intelligence and Computing and IEEE Int. Conf. on Autonomic and Trusted Computing and Proc. IEEE Int. Conf. on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), pages 1187--1192, 2015.Google ScholarGoogle Scholar
  35. G. Xinzhe, S. Guo, Q. Chen, and L. Han. A new calibration method of UWB antenna delay based on the ADS-TWR. In Proc. IEEE Chinese Control Conference (CCC), 2018.Google ScholarGoogle Scholar
  36. A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen, R. Raulefs, and E. Aboutanios. Recent advances in indoor localization: A survey on theoretical approaches and applications. IEEE Communications Surveys & Tutorials, 19(2):1327--1346, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. F. Zafari, A. Gkelias, and K. K. Leung. A survey of indoor localization systems and technologies. IEEE Communications Surveys & Tutorials, (1), 2019.Google ScholarGoogle Scholar

Index Terms

  1. HiPR: High-Precision UWB Ranging for Sensor Networks

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            MSWIM '19: Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
            November 2019
            340 pages
            ISBN:9781450369046
            DOI:10.1145/3345768

            Copyright © 2019 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 25 November 2019

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate398of1,577submissions,25%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader