skip to main content
10.1145/3349623.3355473acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Arena: A 64-antenna SDR-based Ceiling Grid Testbed for Sub-6 GHz Radio Spectrum Research

Published:04 October 2019Publication History

ABSTRACT

Arena is an open-access wireless testing platform based on a grid of antennas mounted on the ceiling of a large office-space environment. Each antenna is connected to programmable software-defined radios enabling sub-6 GHz 5G-and-beyond spectrum research. With 12 computational servers, 24 software defined radios synchronized at the symbol level, and a total of 64 antennas, Arena provides the computational power and the scale to foster new technology development in some of the most crowded spectrum bands. Arena is based on a clean three-tier design, where the servers and the software defined radios are housed in a double rack in a dedicated room, while the antennas are hung off the ceiling of a 2240 square feet office space and cabled to the radios through 100 ft long cables. This ensures a reconfigurable, scalable, and repeatable real-time experimental evaluation in a real wireless indoor environment. This article introduces for the first time architecture, capabilities, and system design choices of Arena, and provide details of the software and hardware implementation of the different testbed components. Finally, we showcase some of the capabilities of Arena in providing a testing ground for key wireless technologies, including synchronized MIMO transmission schemes, multi-hop ad hoc networking, multi-cell LTE networks, and spectrum sensing for cognitive radio.

References

  1. I.F. Akyildiz, W. Lee, M.C. Vuran, and S. Mohanty. 2008. A Survey on Spectrum Management in Cognitive Radio Networks. IEEE Communications Magazine , Vol. 46, 4 (Apr. 2008), 40--48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. B. Bloessl, M. Segata, C. Sommer, and F. Dressler. 2018. Performance Assessment of IEEE 802.11p with an Open Source SDR-based Prototype. IEEE Trans. on Mobile Computing , Vol. 17, 5 (May 2018), 1162--1175.Google ScholarGoogle ScholarCross RefCross Ref
  3. Wanshih Electronic Co. 2019. nolinkurlhttps://kb.ettus.com/images/9/9e/ettus_research_vert2450_datasheet.pdf . (2019).Google ScholarGoogle Scholar
  4. Colosseum. 2019. nolinkurlhttps://www.spectrumcollaborationchallenge.com . (2019).Google ScholarGoogle Scholar
  5. K. R. Dandekar, S. Begashaw, M. Jacovic, A. Lackpour, I. Rasheed, X. Rivas Rey, C. Sahin, S. Shaher, and G. Mainland. 2019. Grid Software Defined Radio Network Testbed for Hybrid Measurement and Emulation. In Proc. of IEEE SECON. Boston, MA, USA.Google ScholarGoogle Scholar
  6. M. Dardaillon, K. Marquet, T. Risset, and A. Scherrer. 2012. Software Defined Radio Architecture Survey for Cognitive Testbeds. In Proc. of IEEE IWCMC . Limassol, Cyprus.Google ScholarGoogle Scholar
  7. AWG RG8-CMP Datasheet. 2019. nolinkurlhttps://rubimages-liberty.netdna-ssl.com/spec/RG8-CMP%20Specification.pdf . (2019).Google ScholarGoogle Scholar
  8. COSMOS: Cloud Enhanced Open Software Defined Mobile Wireless Testbed for City-Scale Deployment. 2019. nolinkurlhttps://cosmos-lab.org . (2019).Google ScholarGoogle Scholar
  9. Powder: Platform for Open Wireless Data-driven Experimental Research. 2019. nolinkurlhttps://powderwireless.net . (2019).Google ScholarGoogle Scholar
  10. I. Gomez-Miguelez, A. Garcia-Saavedra, P.D. Sutton, P. Serrano, C. Cano, and D.J. Leith. 2016. srsLTE: An Open-source Platform for LTE Evolution and Experimentation. In Proc. of ACM WiNTECH. New York City, NY, USA.Google ScholarGoogle Scholar
  11. Z. Guan, L. Bertizzolo, E. Demirors, and T. Melodia. 2018. WNOS: An Optimization-based Wireless Network Operating System. In Proc. of ACM MobiHoc . Los Angeles, CA, USA.Google ScholarGoogle Scholar
  12. S. Kikamaze, V. Marojevic, and C. Dietrich. 2017. Demo: Spectrum Access System on Cognitive Radio Network Testbed. In Proc. of ACM WiNTECH . Snowbird, UT, USA.Google ScholarGoogle Scholar
  13. E.G. Larsson, O. Edfors, F. Tufvesson, and T.L. Marzetta. 2013. Massive MIMO for Next Generation Wireless Systems. arXiv preprint arXiv:1304.6690 (Apr. 2013).Google ScholarGoogle Scholar
  14. T.K.Y. Lo. 1999. Maximum Ratio Transmission. IEEE Trans. on Communications , Vol. 47, 10 (Oct. 1999), 1458--1461.Google ScholarGoogle ScholarCross RefCross Ref
  15. D. Niyato and E. Hossain. 2008. Competitive Spectrum Sharing in Cognitive Radio Networks: A Dynamic Game Approach. IEEE Trans. on Wireless Communications , Vol. 7, 7 (July 2008), 2651--2660.Google ScholarGoogle Scholar
  16. K. Pechlivanidou, K. Katsalis, I. Igoumenos, D. Katsaros, T. Korakis, and L. Tassiulas. 2014. NITOS Testbed: A Cloud based Wireless Experimentation Facility. In Proc. of IEEE ITC . Karlskrona, Sweden.Google ScholarGoogle Scholar
  17. D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H. Liu, and M. Singh. 2005. Overview of the ORBIT Radio Grid Testbed for Evaluation of Next-Generation Wireless Network Protocols. In Proc. of IEEE WCNC. New Orleans, LA, USA.Google ScholarGoogle Scholar
  18. Ettus Research. 2019. nolinkurlhttps://www.ettus.com . (2019).Google ScholarGoogle Scholar
  19. S. Sesia, M. Baker, and I. Toufik. 2011. LTE - The UMTS Long Term Evolution: From Theory to Practice .John Wiley & Sons, Chichester, United Kingdom.Google ScholarGoogle Scholar
  20. N. Sharakhov, V. Marojevic, F. Romano, N. Polys, and C. Dietrich. 2014. Visualizing Real-time Radio Spectrum Access with CORNET3D. In Proc. of ACM Web3D . Vancouver, BC, Canada.Google ScholarGoogle Scholar
  21. P. D. Sutton, J. Lotze, H. Lahlou, S. A. Fahmy, K. E. Nolan, B. Ozgul, T. W. Rondeau, J. Noguera, and L. E. Doyle. 2010. Iris: An Architecture for Cognitive Radio Networking Testbeds. IEEE Communications Magazine , Vol. 48, 9 (Sept. 2010), 114--122.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. CORNET: Cognitive Radio Network Testbed. 2019 a. nolinkurlhttps://cornet.wireless.vt.edu . (2019).Google ScholarGoogle Scholar
  23. UFMG Testbed. 2019 b. nolinkurlhttp://futebol.dcc.ufmg.br . (2019).Google ScholarGoogle Scholar
  24. UEFS Testbed. 2019 c. nolinkurlhttp://futebol.inf.ufes.br . (2019).Google ScholarGoogle Scholar
  25. UFRGS Testbed. 2019 d. nolinkurlhttp://futebol.inf.ufrgs.br . (2019).Google ScholarGoogle Scholar
  26. UNIVBRIS Testbed. 2019 e. nolinkurlhttps://www.bristolisopen.com . (2019).Google ScholarGoogle Scholar
  27. LESC CR/SDR Testbeds. 2019. nolinkurlhttp://lesc.det.unifi.it/en/node/194 . (2019).Google ScholarGoogle Scholar
  28. R. Zhang and Y. Liang. 2008. Exploiting Multi-Antennas for Opportunistic Spectrum Sharing in Cognitive Radio Networks. IEEE Journal of Selected Topics in Signal Processing , Vol. 2, 1 (Feb. 2008), 88--102.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Arena: A 64-antenna SDR-based Ceiling Grid Testbed for Sub-6 GHz Radio Spectrum Research

                        Recommendations

                        Comments

                        Login options

                        Check if you have access through your login credentials or your institution to get full access on this article.

                        Sign in
                        • Published in

                          cover image ACM Conferences
                          WiNTECH '19: Proceedings of the 13th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization
                          October 2019
                          58 pages
                          ISBN:9781450369312
                          DOI:10.1145/3349623

                          Copyright © 2019 ACM

                          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                          Publisher

                          Association for Computing Machinery

                          New York, NY, United States

                          Publication History

                          • Published: 4 October 2019

                          Permissions

                          Request permissions about this article.

                          Request Permissions

                          Check for updates

                          Qualifiers

                          • research-article

                          Acceptance Rates

                          Overall Acceptance Rate63of100submissions,63%

                        PDF Format

                        View or Download as a PDF file.

                        PDF

                        eReader

                        View online with eReader.

                        eReader