skip to main content
research-article

Survey of Reconfigurable Data Center Networks: Enablers, Algorithms, Complexity

Published:24 July 2019Publication History
Skip Abstract Section

Abstract

Emerging optical technologies introduce opportunities to recon gure network topologies at runtime. The resulting topological exibilities can be exploited to design novel demand-aware and self-adjusting networks. This paper provides an overview of the algorithmic problems introduced by this technology, and surveys rst solutions.

References

  1. A. Akella, T. Benson, B. Chandrasekaran, C. Huang, B. Maggs, and D. Maltz. A universal approach to data center network design. In Proceedings of the 2015 International Conference on Distributed Computing and Networking, page 41. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. In SIGCOMM. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Alistarh, H. Ballani, P. Costa, A. Funnell, J. Benjamin, P. M. Watts, and B. Thomsen. A high-radix, low-latency optical switch for data centers. Computer Communication Review, 45(5):367{368, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. pfabric: Minimal near-optimal datacenter transport. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM '13, New York, NY, USA, 2013. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Arista. White Paper: A laymans guide to Layer 1 Switching. https://www.arista.com/assets/data/pdf/Whitepapers/Laymans-Guide-White-Paper.pdf, Dec. 2018.Google ScholarGoogle Scholar
  6. C. Avin, B. Haeupler, Z. Lotker, C. Scheideler, and S. Schmid. Locally self-adjusting tree networks. In Proc. 27th IEEE International Parallel and Distributed Processing Symposium (IPDPS), May 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. Avin, A. Hercules, A. Loukas, and S. Schmid. rdan: Toward robust demand-aware network designs. In Information Processing Letters (IPL), 2018.Google ScholarGoogle ScholarCross RefCross Ref
  8. C. Avin, K. Mondal, and S. Schmid. Demand-aware network designs of bounded degree. In DISC, 2017.Google ScholarGoogle Scholar
  9. C. Avin, K. Mondal, and S. Schmid. Push-down trees: Optimal self-adjusting complete trees. CoRR, abs/1807.04613v1, 2018.Google ScholarGoogle Scholar
  10. C. Avin, K. Mondal, and S. Schmid. Demand-aware network design with minimal congestion and route lengths. In Proc. IEE INFOCOM, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. Avin and S. Schmid. Toward demand-aware networking: A theory for self-adjusting networks. In ACM SIGCOMM Computer Communication Review (CCR), 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Avin and S. Schmid. Renets: Toward statically optimal self-adjusting networks. CoRR, arXiv:1904.03263, 2019.Google ScholarGoogle Scholar
  13. N. H. Azimi, Z. A. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H. Shah, and A. Tanwer. Fire y: a recon gurable wireless data center fabric using free-space optics. In SIGCOMM. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Bao, D. Dong, B. Zhao, Z. Luo, C.Wu, and Z. Gong. Flycast: Free-space optics accelerating multicast communications in physical layer. Computer Communication Review, 45(5):97{98, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data centers in the wild. In Proc. ACM SIGCOMM Conference on Internet Measurement (IMC), pages 267{280. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data center traffic characteristics. In Proc. 1st ACM Workshop on Research on Enterprise Networking (WREN), pages 65{72. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Birkho . Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman, Ser. A, 5:147{ 154, 1946.Google ScholarGoogle Scholar
  18. A. Celik, B. Shihada, and M. Alouini. Wireless data center networks: Advances, challenges, and opportunities. CoRR, abs/1811.11717, 2018.Google ScholarGoogle Scholar
  19. A. Chatzieleftheriou, S. Legtchenko, H. Williams, and A. I. T. Rowstron. Larry: Practical network recon gurability in the data center. In NSDI, pages 141{156. USENIX Association, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen. OSA: an optical switching architecture for data center networks with unprecedented exibility. IEEE/ACM Trans. Netw., 22(2):498{511, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. K. Chen, X. Wen, X. Ma, Y. Chen, Y. Xia, C. Hu, Q. Dong, and Y. Liu. Toward A scalable, fault-tolerant, high-performance optical data center architecture. IEEE/ACM Trans. Netw., 25(4):2281{2294, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. L. Chen, K. Chen, Z. Zhu, M. Yu, G. Porter, C. Qiao, and S. Zhong. Enabling wide-spread communications on optical fabric with megaswitch. In NSDI, pages 577{593. USENIX, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. Clos. A study of non-blocking switching networks. The Bell System Technical Journal, 32(2):406{424, March 1953.Google ScholarGoogle ScholarCross RefCross Ref
  24. E. D. Demaine and M. Zadimoghaddam. Minimizing the diameter of a network using shortcut edges. In SWAT, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. N. Devanur, J. Kulkarni, G. Ranade, M. Ghobadi, R. Mahajan, and A. Phanishayee. Stable matching algorithm for an agile recon gurable data center interconnect (MSR-TR-2016--1140). Technical report, Microsoft Research, June 2016.Google ScholarGoogle Scholar
  26. M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. PCC: Re-architecting Congestion Control for Consistent High Performance. NSDI'15, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. V. Dukic, S. A. Jyothi, B. Karlas, M. Owaida, C. Zhang, and A. Singla. Is advance knowledge of ow sizes a plausible assumption? In NSDI, pages 565{580. USENIX Association, 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Durairajan, P. Barford, J. Sommers, and W. Willinger. Grey ber: A system for providing exible access to wide-area connectivity. CoRR, abs/1807.05242, 2018.Google ScholarGoogle Scholar
  29. J. Edmonds. Paths, trees and owers. Canad. J. Math, (17):449{467, 1965.Google ScholarGoogle ScholarCross RefCross Ref
  30. N. Farrington, A. Forencich, G. Porter, P. . Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat. A multiport microsecond optical circuit switch for data center networking. IEEE Photonics Technology Letters, 25(16):1589{1592, Aug 2013.Google ScholarGoogle ScholarCross RefCross Ref
  31. N. Farrington, G. Porter, Y. Fainman, G. Papen, and A. Vahdat. Hunting mice with microsecond circuit switches. In HotNets, pages 115{120. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat. Helios: a hybrid electrical/optical switch architecture for modular data centers. In SIGCOMM. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. T. Fenz, K.-T. Foerster, S. Schmid, and A. Villedieu. Efficient non-segregated routing for recon gurable demand-aware networks. In 18th IFIP Networking Conference (IFIP Network- ing), May 2019.Google ScholarGoogle Scholar
  34. K.-T. Foerster, M. Ghobadi, and S. Schmid. Characterizing the algorithmic complexity of recon gurable data center architectures. In ANCS. IEEE/ACM, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. K.-T. Foerster, M. Pacut, and S. Schmid. On the complexity of non-segregated routing in recon gurable data center architectures. ACM SIGCOMM Computer Communication Review (CCR), 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American Mathematical Monthly, 69(1):9{15, 1962.Google ScholarGoogle ScholarCross RefCross Ref
  37. M. Ghobadi, R. Mahajan, A. Phanishayee, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper. Design of mirror assembly for an agile recon gurable data center interconnect (MSR-TR-2016--1139). Technical report, June 2016.Google ScholarGoogle Scholar
  38. M. Ghobadi, R. Mahajan, A. Phanishayee, N. R. Devanur, J. Kulkarni, G. Ranade, P. Blanche, H. Rastegarfar, M. Glick, and D. C. Kilper. Projector: Agile recon gurable data center interconnect. In SIGCOMM. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. Ghorbani, Z. Yang, P. Godfrey, Y. Ganjali, and A. Firoozshahian. Drill: Micro load balancing for low-latency data center networks. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication, pages 225{238. ACM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. Goel, M. Kapralov, and S. Khanna. Perfect matchings in o(nlog n) time in regular bipartite graphs. SIAM J. Comput., 42(3):1392{1404, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  41. A. G. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and exible data center network. In SIGCOMM, pages 51{62. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. Bcube: a high performance, server-centric network architecture for modular data centers. In SIGCOMM, pages 63{74. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. Hall, V. Chidambaram, and R. Durairajan. vFiber: Virtualizing Unused Optical Fibers (Extended Abstract). In NSDI, 2018.Google ScholarGoogle Scholar
  44. D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall. Augmenting data center networks with multi-gigabit wireless links. In SIGCOMM. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. A. S. Hamza, J. S. Deogun, and D. R. Alexander. Wireless communication in data centers: A survey. IEEE Communications Surveys and Tutorials, 18(3):1572{1595, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  46. X. S. Huang, X. S. Sun, and T. S. E. Ng. Sun ow: Efficient optical circuit scheduling for co ows. In CoNEXT, pages 297{311. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. Jia, X. Jin, G. Ghasemiesfeh, J. Ding, and J. Gao. Competitive analysis for online scheduling in software-de ned optical wan. In Proc. IEEE INFOCOM, 2017.Google ScholarGoogle Scholar
  48. X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu, and J. Rexford. Optimizing bulk transfers with software-de ned optical wan. In Proc. ACM SIGCOMM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. P. Kalmbach, J. Zerwas, P. Babarczi, A. Blenk, W. Kellerer, and S. Schmid. Empowering self-driving networks. In Proc. ACM SIGCOMM 2018 Workshop on Self-Driving Networks (SDN), 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congest data center networks. In HotNets. ACM SIGCOMM, 2009.Google ScholarGoogle Scholar
  51. S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The nature of data center traffic: measurements & analysis. In Proc. 9th ACM SIGCOMM Conference on Internet Measurement (IMC), pages 202{208. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla. Beyond fat-trees without antennae, mirrors, and disco-balls. In SIGCOMM, pages 281{294. ACM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. S. Kim, D. Cha, Q. Pei, and K. Geary. Polymer optical waveguide switch using thermo-optic total-internal-re ection and strain-e ect. IEEE Photonics Technology Letters, 22(4):197{199, Feb 2010.Google ScholarGoogle ScholarCross RefCross Ref
  54. X. Li and M. Hamdi. On scheduling optical packet switches with recon guration delay. IEEE Journal on Selected Areas in Communications, 21(7):1156{1164, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker, G. Papen, A. C. Snoeren, and G. Porter. Circuit switching under the radar with reactor. In NSDI. USENIX, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage, S. Seshan, G. M. Voelker, D. G. Andersen, M. Kaminsky, G. Porter, and A. C. Snoeren. Scheduling techniques for hybrid circuit/packet networks. In CoNEXT, pages 41:1{41:13. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. V. Liu, D. Halperin, A. Krishnamurthy, and T. E. Anderson. F10: A fault-tolerant engineered network. In NSDI. USENIX, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. L. Luo, K.-T. Foerster, S. Schmid, and H. Yu. DaRTree: Deadline-aware Multicast Transfers in Recon gurable Wide-Area Networks. In 27th IEEE/ACM International Symposium on Quality of Service (IWQoS 2019), 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and G. Porter. Expanding across time to deliver bandwidth efficiency and low latency. CoRR, abs/1903.12307, 2019.Google ScholarGoogle Scholar
  60. W. M. Mellette and J. E. Ford. Scaling limits of free-space tilt mirror mems switches for data center networks. In Optical Fiber Communication Conference, pages M2B{1. Optical Society of America, 2015.Google ScholarGoogle Scholar
  61. W. M. Mellette and J. E. Ford. Scaling limits of mems beam-steering switches for data center networks. Journal of Lightwave Technology, 33(15):3308{3318, Aug 2015.Google ScholarGoogle ScholarCross RefCross Ref
  62. W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C. Snoeren, and G. Porter. Rotornet: A scalable, low-complexity, optical datacenter network. In SIGCOMM. ACM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. W. M. Mellette, G. M. Schuster, G. Porter, G. Papen, and J. E. Ford. A scalable, partially con gurable optical switch for data center networks. Journal of Lightwave Technology, 35(2):136{144, Jan 2017.Google ScholarGoogle ScholarCross RefCross Ref
  64. W. M. Mellette, A. C. Snoeren, and G. Porter. Toward optical switching in the data center (invited paper). In Proc. HPSR, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  65. A. Meyerson and B. Tagiku. Minimizing average shortest path distances via shortcut edge addition. In Proc. APPROX/RANDOM, pages 272{285, Berlin, Heidelberg, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. J. Misra and D. Gries. A constructive proof of vizing's theorem. Inf. Process. Lett., 41(3):131{ 133, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Trumpet: Timely and precise triggers in data centers. In Proceedings of the 2016 ACM SIGCOMM Conference, pages 129{143. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. M. Müller-Hannemann and A. Schwartz. Implementing weighted b-matching algorithms: Insights from a computational study. ACM Journal of Experimental Algorithmics, 5:8, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. M. Naor and U. Wieder. Novel architectures for p2p applications: the continuous-discrete approach. ACM Transactions on Algorithms (TALG), 3(3):34, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. M. Noormohammadpour and C. S. Raghavendra. Datacenter traffic control: Understanding techniques and trade-o s. IEEE Communications Surveys & Tutorials, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  71. K. Obraczka and P. Danzig. Finding low-diameter, low edge-cost, networks. Univ. Southern California Technical Report, 1997.Google ScholarGoogle Scholar
  72. M. Papagelis, F. Bonchi, and A. Gionis. Suggesting ghost edges for a smaller world. In Proc. 20th ACM International Conference on Information and Knowledge Management, pages 2305{2308, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. N. Parotsidis, E. Pitoura, and P. Tsaparas. Selecting shortcuts for a smaller world. In Proc. SIAM International Conference on Data Mining, pages 28{36. SIAM, 2015.Google ScholarGoogle Scholar
  74. B. Peres, O. A. de Oliveira Souza, O. Goussevskaia, C. Avin, and S. Schmid. Distributed self-adjusting tree networks. In INFOCOM. IEEE, 2019.Google ScholarGoogle Scholar
  75. B. Peres, O. Goussevskaia, S. Schmid, and C. Avin. Concurrent self-adjusting distributed tree networks. In Proc. International Symposium on Distributed Computing (DISC), 2017.Google ScholarGoogle Scholar
  76. G. Porter, R. D. Strong, N. Farrington, A. Forencich, P. Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat. Integrating microsecond circuit switching into the data center. 2013.Google ScholarGoogle Scholar
  77. K. Ramachandran, R. Kokku, R. Mahindra, and S. Rangarajan. 60 ghz data-center networking: Wireless ! worry less? NEC Research Paper, 2008.Google ScholarGoogle Scholar
  78. N. A. Riza and P. J. Marraccini. Power smart in-door optical wireless link applications. In 2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC), pages 327{332. IEEE, 2012.Google ScholarGoogle Scholar
  79. A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the social network's (datacenter) network. In ACM SIGCOMM Computer Communication Review, volume 45. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. S. Salman, C. Strei er, H. Chen, T. Benson, and A. Kadav. Deepconf: Automating data center network topologies management with machine learning. In Proceedings of the 2018 Workshop on Network Meets AI & ML, NetAI'18, pages 8{14, New York, NY, USA, 2018. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler, and Z. Lotker. Splaynet: Towards locally self-adjusting networks. IEEE/ACM Trans. Netw., 24(3):1421{1433, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, et al. Jupiter rising: A decade of clos topologies and centralized control in google's datacenter network. ACM SIGCOMM Computer Communication Review (CCR), 45(4):183{197, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. R. Singh, M. Ghobadi, K. Foerster, M. Filer, and P. Gill. Run, walk, crawl: Towards dynamic link capacities. In HotNets. ACM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, and P. Gill. Radwan: Rate adaptive wide area network. In SIGCOMM. ACM, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. A. Singla. Fat-free topologies. In HotNets, pages 64{70. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. A. Singla, C. Hong, L. Popa, and P. B. Godfrey. Jelly sh: Networking data centers, randomly. In HotCloud. USENIX Association, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. A. Singla, C. Hong, L. Popa, and P. B. Godfrey. Jelly sh: Networking data centers randomly. In NSDI. USENIX, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang. Proteus: a topology malleable data center network. In HotNets. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. X. S. Sun and T. S. E. Ng. When creek meets river: Exploiting high-bandwidth circuit switch in scheduling multicast data. In ICNP, pages 1{6. IEEE Computer Society, 2017.Google ScholarGoogle Scholar
  90. X. S. Sun, Y. Xia, S. Dzinamarira, X. S. Huang, D. Wu, and T. S. E. Ng. Republic: Data multicast meets hybrid rack-level interconnections in data center. In ICNP, pages 77{87. IEEE Computer Society, 2018.Google ScholarGoogle Scholar
  91. F. Testa and L. Pavesi, editors. Optical Switching in Next Generation Data Centers. Springer, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira. Xpander: Towards optimalperformance datacenters. In CoNEXT, pages 205{219. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. L. G. Valiant. A scheme for fast parallel communication. SIAM J. Comput., 11(2):350{361, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  94. S. B. Venkatakrishnan, M. Alizadeh, and P. Viswanath. Costly circuits, submodular schedules and approximate carath--eodory theorems. In SIGMETRICS, pages 75{88. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. S. B. Venkatakrishnan, M. Alizadeh, and P. Viswanath. Costly circuits, submodular schedules and approximate carath--eodory theorems. Queueing Syst., 88(3--4):311{347, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. J. Von Neumann. A certain zero-sum two-person game equivalent to the optimal assignment problem. Contributions to the Theory of Games, 2(0):5{12, 1953.Google ScholarGoogle Scholar
  97. G. Wang, D. G. Andersen, M. Kaminsky, M. Kozuch, T. S. E. Ng, K. Papagiannaki, M. Glick, and L. B. Mummert. Your data center is a router: The case for recon gurable optical circuit switched paths. In HotNets. ACM SIGCOMM, 2009.Google ScholarGoogle Scholar
  98. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. P. Ryan. c-through: part-time optics in data centers. In SIGCOMM, pages 327{338. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. H. Wang, Y. Xia, K. Bergman, T. S. E. Ng, S. Sahu, and K. Sripanidkulchai. Rethinking the physical layer of data center networks of the next decade: using optics to enable efficient *-cast connectivity. Computer Communication Review, 43(3):52{58, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. H. Wang, X. Yu, H. Xu, J. Fan, C. Qiao, and L. Huang. Integrating co ow and circuit scheduling for optical networks. IEEE Transactions on Parallel and Distributed Systems, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  101. M. Wang, Y. Cui, S. Xiao, X. Wang, D. Yang, K. Chen, and J. Zhu. Neural network meets DCN: traffic-driven topology adaptation with deep learning. POMACS, 2(2):26:1{26:25, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. W. Xia, P. Zhao, Y. Wen, and H. Xie. A survey on data center networking (DCN): infrastructure and operations. IEEE Communications Surveys and Tutorials, 19(1):640{656, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  103. Y. Xia, T. S. E. Ng, and X. S. Sun. Blast: Accelerating high-performance data analytics applications by optical multicast. In INFOCOM, pages 1930{1938. IEEE, 2015.Google ScholarGoogle Scholar
  104. Y. Xia, X. S. Sun, S. Dzinamarira, D. Wu, X. S. Huang, and T. S. Eugene Ng. A tale of two topologies: Exploring convertible data center network architectures with at-tree. In SIGCOMM. ACM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and H. Zheng. Mirror mirror on the ceiling: exible wireless links for data centers. In SIGCOMM. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Foerster, A. Krishnamurthy, and T. E. Anderson. Understanding and mitigating packet corruption in data center networks. In SIGCOMM. ACM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. S. Zou, X. Wen, K. Chen, S. Huang, Y. Chen, Y. Liu, Y. Xia, and C. Hu. Virtualknotter: Online virtual machine shuffling for congestion resolving in virtualized datacenter. Computer Networks, 67:141{153, 2014.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM SIGACT News
    ACM SIGACT News  Volume 50, Issue 2
    June 2019
    76 pages
    ISSN:0163-5700
    DOI:10.1145/3351452
    Issue’s Table of Contents

    Copyright © 2019 Authors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 24 July 2019

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader