skip to main content
research-article

Cloud-Hosted Intelligence for Real-time IoT Applications

Published: 25 July 2019 Publication History

Abstract

Deploying machine learning into IoT cloud settings will require an evolution of the cloud infrastructure. In this white paper, we justify this assertion and identify new capabilities needed for real-time intelligent systems. We also outline our initial efforts to create a new edge architecture more suitable for ML. Although the work is still underway, several components exist, and we review them. We then point to open technical problems that will need to be solved as we progress further in this direction.

References

[1]
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. Tensorflow: A system for large-scale machine learning.
[2]
Acharya, J., De Sa, C., Foster, D. J., and Sridharan, K. Distributed learning with sublinear communication. arXiv preprint arXiv:1902.11259 (2019).
[3]
Beery, S., Van Horn, G., and Perona, P. Recognition in terra incognita. In The European Conference on Computer Vision (ECCV) (September 2018).
[4]
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E. R., and Mitchell, T. M. Toward an architecture for never-ending language learning. In Twenty-Fourth AAAI Conference on Artificial Intelligence (2010).
[5]
Cui, Y., Song, Y., Sun, C., Howard, A., and Belongie, S. Large scale fine-grained categorization and domain-specific transfer learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018).
[6]
De Sa, C., Chen, V., and Wong, W. Minibatch gibbs sampling on large graphical models. arXiv preprint arXiv:1806.06086 (2018).
[7]
De Sa, C., Feldman, M., R´e, C., and Olukotun, K. Understanding and optimizing asynchronous low-precision stochastic gradient descent. In ACM SIGARCH Computer Architecture News (2017), vol. 45, ACM, pp. 561--574.
[8]
De Sa, C., Olukotun, K., and R´e, C. Ensuring rapid mixing and low bias for asynchronous gibbs sampling. In JMLR workshop and conference proceedings (2016), vol. 48, NIH Public Access, p. 1567.
[9]
Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML (2017).
[10]
Hariharan, B., and Girshick, R. Low-shot visual recognition by shrinking and hallucinating features. In Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 3018--3027.
[11]
He, B. D., De Sa, C. M., Mitliagkas, I., and R´e, C. Scan order in gibbs sampling: Models in which it matters and bounds on how much. In Advances in neural information processing systems (2016), pp. 1--9.
[12]
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).
[13]
Jha, S., Behrens, J., Gkountouvas, T., Milano, M., Song, W., Tremel, E., Renesse, R. V., Zink, S., and Birman, K. P. Derecho: Fast State Machine Replication for Cloud Services. ACM Trans. Comput. Syst. 36, 2 (Apr. 2019), 4:1--4:49.
[14]
Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., luc Cantin, P., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., and Yoon, D. H. In-datacenter performance analysis of a Tensor Processing Unit. In International Symposium on Computer Architecture (ISCA) (2017).
[15]
Peter, S., Li, J., Zhang, I., Ports, D. R. K., Woos, D., Krishnamurthy, A., Anderson, T., and Roscoe, T. Arrakis: The operating system is the control plane. ACM Trans. Comput. Syst. 33, 4 (Nov. 2015), 11:1-- 11:30.
[16]
Ratner, A., Alistarh, D., Alonso, G., Andersen, D. G., Bailis, P., Bird, S., Carlini, N., Catanzaro, B., Chayes, J., Chung, E., Dally, B., De Sa, C., Dean, J., Dhillon, I. S., Dimakis, A., Dubey, P., Elkan, C., Fursin, G., Ganger, G. R., Getoor, L., Gibbons, P. B., Gibson, G. A., Gonzalez, J. E., Gottschlich, J., Han, S., Hazelwood, K., Huang, F., Jaggi, M., Jamieson, K., Jordan, M. I., Joshi, G., Khalaf, R., Knight, J., Konecn´y, J., Kraska, T., Kumar, A., Kyrillidis, A., Lakshmiratan, A., Li, J., Madden, S., McMahan, H. B., Meijer, E., Mitliagkas, I., Monga, R., Murray, D., Olukotun, K., Papailiopoulos, D., Pekhimenko, G., R'e, C., Rekatsinas, T., Rostamizadeh, A., Sedghi, H., Sen, S., Smith, V., Smola, A., Song, D., Sparks, E., Stoica, I., Sze, V., Udell, M., Vanschoren, J., Venkataraman, S., Vinayak, R., Weimer, M.,Wilson, A. G., Xing, E., Zaharia, M., Zhang, C., and Talwalkar, A. Sysml: The new frontier of machine learning systems. https://www.sysml. cc/doc/sysml-whitepaper.pdf, 2019.
[17]
Sandler, M. B., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L.-C. MobileNetV2: Inverted residuals and linear bottlenecks. In Conference on Computer Vision and Pattern Recognition (CVPR) (2018).
[18]
Snell, J., Swersky, K., and Zemel, R. S. Prototypical networks for few-shot learning. In NIPS (2017).
[19]
Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, k., and Wierstra, D. Matching networks for one shot learning. In NIPS. 2016.
[20]
Wang, Y.-X., Girshick, R., Herbert, M., and Hariharan, B. Low-shot learning from imaginary data. In Computer Vision and Pattern Recognition (CVPR) (2018).
[21]
Wertheimer, D., and Hariharan, B. Few-shot learning with localization in realistic settings. In Computer Vision and Pattern Recognition (CVPR) (2019).
[22]
Zhao, R., Hu, Y., Dotzel, J., De Sa, C., and Zhang, Z. Building efficient deep neural networks with unitary group convolutions. arXiv preprint arXiv:1811.07755 (2018).
[23]
Zhao, R., Hu, Y., Dotzel, J., Sa, C. D., and Zhang, Z. Improving neural network quantization without retraining using outlier channel splitting. CoRR abs/1901.09504 (2019).

Cited By

View all
  • (2024)Empowering Cloud Computing With Network Acceleration: A SurveyIEEE Communications Surveys & Tutorials10.1109/COMST.2024.337753126:4(2729-2768)Online publication date: 1-Oct-2024
  • (2023)INSANEProceedings of the 24th International Middleware Conference10.1145/3590140.3629105(57-70)Online publication date: 27-Nov-2023
  • (2021)Accuracy-Efficiency Trade-Offs and Accountability in Distributed ML SystemsProceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization10.1145/3465416.3483289(1-11)Online publication date: 5-Oct-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGOPS Operating Systems Review
ACM SIGOPS Operating Systems Review  Volume 53, Issue 1
July 2019
90 pages
ISSN:0163-5980
DOI:10.1145/3352020
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 July 2019
Published in SIGOPS Volume 53, Issue 1

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)16
  • Downloads (Last 6 weeks)5
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Empowering Cloud Computing With Network Acceleration: A SurveyIEEE Communications Surveys & Tutorials10.1109/COMST.2024.337753126:4(2729-2768)Online publication date: 1-Oct-2024
  • (2023)INSANEProceedings of the 24th International Middleware Conference10.1145/3590140.3629105(57-70)Online publication date: 27-Nov-2023
  • (2021)Accuracy-Efficiency Trade-Offs and Accountability in Distributed ML SystemsProceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization10.1145/3465416.3483289(1-11)Online publication date: 5-Oct-2021
  • (2020)Reliable, Efficient Recovery for Complex Services with Replicated Subsystems2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)10.1109/DSN48063.2020.00035(172-183)Online publication date: Jun-2020
  • (undefined)Regulating Accuracy-Efficiency Trade-Offs in Distributed Machine Learning SystemsSSRN Electronic Journal10.2139/ssrn.3650497

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media