skip to main content
10.1145/3362752.3362758acmotherconferencesArticle/Chapter ViewAbstractPublication PageseeetConference Proceedingsconference-collections
research-article

Screening of Moderate Traumatic Brain Injury from Power Feature of Resting State Electroencephalography using Support Vector Machine

Published: 25 September 2019 Publication History

Abstract

Traumatic brain injury (TBI) needs to be identified faster, so that suitable treatment can be planned properly. Normally, the severity of TBI is evaluated through the study from computed tomography (CT) or magnetic resonance imaging (MRI). Unfortunately, the number of CT scanners and MRI scanners is limited. Therefore, it is impractical to directly do CT or MRI scan to all patients without screening. Thus, this research investigates a method for screening moderate TBI patient. Data from resting state 63-channels electroencephalography is used in this work. Power of the signal is extracted from alpha, beta, theta and gamma frequency bands. This work utilizes a support vector machine, which is one of machine learning approaches, to identify moderate TBI patients. From the experimental results, it is shown that the average power from alpha or theta band gives the best accuracy score, which is at 70.83%.

References

[1]
Moppett, I. K. 2007. Traumatic brain injury: Assessment, resuscitation and early management. Brit. J. Anaesth. 99, 1(Jul. 2007), 18--31. DOI= https://doi.org/10.1093/bja/aem128
[2]
Udekwu, P., Schiro, S., Vaslef, S., Baker, C., and Oller, D. 2004. Glasgow coma scale score, mortality, and functional outcome in head-injured patients. J. Trauma. 56, 5(May 2004), 1084--1089. DOI= 10.1097/01.ta.0000124283.02605.a5
[3]
Papa, L., Robinson, G., Oli, M., Pineda, J., Demery, J., Brophy, G., Robicsek, S. A., Gabrielli, A., Robertson, C. S., Wang, K. K., and Hayes, R. L. 2008. Use of biomarkers for diagnosis and management of traumatic brain injury patients. Expert Opinion on Medical Diagnostics. 2, 8(Aug. 2008), 937--945. DOI= https://doi.org/10.1517/17530059.2.8.937
[4]
Maas, A. I., Stocchetti, N., and Bullock, R. 2008. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 7, 8(Aug. 2008), 728--741. DOI = 10.1016/S1474-4422(08)70164-9
[5]
Vitaz, T. W., Jenks, J., Raque, G. H., and Shields, C. B. 2003. Outcome following moderate traumatic brain injury. Surg. Neurol. 60, 4(Oct. 2003), 285--291.
[6]
Fabbri, A., Servadei, F., Marchesini, G., Stein, S. C., and Vandelli, A. 2008. Early predictors of unfavourable outcome in subjects with moderate head injury in the emergency department. J.Neurol. Neurosurg. Psychiatry. 79, 5(May 2008), 567--573. DOI= 10.1136/jnnp.2007.120162
[7]
Griffey, R. T., and Sodickson, A. 2009. Cumulative radiation exposure and cancer risk estimates in emergency department patients undergoing repeat or multiple CT. AJR Am. J. Roentgenol. 192, 4(Apr. 2009), 887--892. DOI= 10.2214/AJR.08.1351
[8]
Gevins, A., Leong, H., Smith, M. E., Le, J., and Du, R. 1995. Mapping cognitive brain function with modern high-resolution electroencephalography. Trends Neurosci. 18, 10 (Oct. 1995), 429--436.
[9]
Reeves, T. M., and Colley, B. S. 2012. Electrophysiological Approaches in Traumatic Brain Injury. Humana Press, Totowa, NJ.
[10]
Arciniegas, D. B. 2011. Clinical electrophysiologic assessments and mild traumatic brain injury: State-of-the-science and implications for clinical practice. Int. J. Psychophysiol. 82, 1(Oct. 2011), 41--52. DOI= 10.1016/j.ijpsycho.2011.03.004
[11]
Hanley, D., Prichep, L. S., Badjatia, N., Bazarian, J., Chiacchierini, R., Curley, K. C., Garrett, J., Jones, E., Naunheim, R., O'Neil, B., O'Neill, J., Wright, D. W., and Huff, J. S. 2018. A brain electrical activity electroencephalographic-based biomarker of functional impairment in traumatic brain injury: A multi-site validation trial. J. Neurotrauma. 35, 1(Jan. 2018), 41--47. DOI= 10.1089/neu.2017.5004
[12]
Ianof, J., and Anghinah, R. 2017. Traumatic brain injury: An EEG point of view. Dement. Neuropsychol. 11, 1(Jan.-Mar. 2017), 3--5. DOI= 10.1590/1980-57642016dn11-010002.
[13]
Tolonen, A., Srkel, M. O. K., Takala, R. S. K., Katila, A., Frantzn, J., Posti, J. P., Mller, M., van Gils, M., and Tenovuo, O. 2018. Quantitative EEG parameters for prediction of outcome in severe traumatic brain injury: Development study. Clin. EEG Neurosci. 49, 4(Jul. 2018), 248--257. DOI= https://doi.org/10.1177/1550059417742232
[14]
Fisher, J. A. N., Huang, S., Ye, M., Nabili, M., Wilent, W. B., Krauthamer, V., Myers, M. R., and Welle, C. G. 2016. Real-time detection and monitoring of acute brain injury utilizing evoked electroencephalographic potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 9(Sep. 2016), 1003--1012. DOI= 10.1109/TNSRE.2016.2529663
[15]
McBride, J., Zhao, X., Nichols, T., Vagnini, V., Munro, N., Berry, D., and Jiang, Y. 2013. Scalp EEG-based discrimination of cognitive deficits after traumatic brain injury using event-related Tsallis entropy analysis. IEEE Trans. Biomed. Eng. 60, 1(Jan. 2013), 90--96. DOI= 10.1109/TBME.2012.2223698
[16]
Yadav, N. K., and Ciuffreda, K. J. 2015. Objective assessment of visual attention in mild traumatic brain injury (mTBI) using visual-evoked potentials (vep). Brain Inj. 29, 3(Nov. 2015), 352--365. DOI= https://doi.org/10.3109/02699052.2014.979229
[17]
Schmitt, S., and Dichter, M. A. 2015. Chapter 21 - Electrophysiologic recordings in traumatic brain injury in Traumatic Brain Injury, Part I, ser. Handbook of Clinical Neurology, J. Grafman and A. M. Salazar, Eds. Elsevier, 2015, vol. 127, pp. 319--339.
[18]
Basar, E., Gnder, A., and Ungan, P. 1976. Important relation between EEG and brain evoked potentials. I. Resonance phenomena in subdural structures of the cat brain. Biol. Cyber. 25, 1(Dec. 1976), 27--40.
[19]
R. V. den Brink, S. Nieuwenhuis, G. van Boxtel, G. van Luijtelaar, H. Eilander, and V. Wijnen, "Task-free spectral EEG dynamics track and predict patient recovery from severe acquired brain injury," NeuroImage: Clinical, vol. 17, pp. 43--52, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2213158217302449
[20]
McNerney, M. W., Hobday, T., Cole, B., Ganong, R., Winans, N., Matthews, D., Hood, J., and Lane, S. 2019. Objective classification of mTBI using machine learning on a combination of frontopolar electroencephalography measurements and self-reported symptoms. Sports Med. Open. 5, 1(Apr. 2019), 14. DOI= https://doi.org/10.1186/s40798-019-0187-y
[21]
Lai, C. Q., Ibrahim, H., Abdullah, M.Z., Abdullah, J.M., Suandi, S. A., and Azman, A. 2019. Arrangement of resting state electroencephalography as the input to convolutional neural network for biometric identification. Comput. Intell. Neurosci. 2019, Article ID 7895924, 10 pages. DOI= https://doi.org/10.1155/2019/7895924
[22]
Hine, G. E., Maiorana, E., and Campisi, P. 2017. Resting-state EEG: A study on its non-stationarity for biometric applications. In 2017 International Conference of the Biometrics Special Interest Group (BIOSIG), (Darmstadt, Germany, September 20-22, 2017), IEEE, 1--5. DOI= 10.23919/BIOSIG.2017.8053519
[23]
Lai, C. Q., Ibrahim, H., Abdullah, M.Z., Abdullah, J.M., Suandi, S. A., and Azman, A. 2018. Artifacts and noise removal for electroencephalogram (EEG): A literature review. In 2018 IEEE Symposium on Computer Applications Industrial Electronics (ISCAIE), (Penang, Malaysia, 28-29 April 2018), IEEE, 326--332. DOI= 10.1109/ISCAIE.2018.8405493
[24]
Lai, C. Q., Ibrahim, H., Abdullah, M.Z., Abdullah, J.M., Suandi, S. A., and Azman, A. 2019. Features from electroencephalogram (EEG) for signal analysis. Journal of Advanced Research in Dynamical Control Systems, 11, 03-Special Issue, 1781--1787.
[25]
Hsu, C.-W., Chang, C.-C., and Lin, C.-J. 2003. A Practical Guide to Support Vector Classification. Technical Report. Department of Computer Science, National Taiwan

Cited By

View all
  • (2022)Prediction of Recovery from Traumatic Brain Injury with EEG Power Spectrum in Combination of Independent Component Analysis and RUSBoost ModelBioMedInformatics10.3390/biomedinformatics20100072:1(106-123)Online publication date: 6-Jan-2022
  • (2022)Traumatic Brain Injury (TBI) Detection: Past, Present, and FutureBiomedicines10.3390/biomedicines1010247210:10(2472)Online publication date: 3-Oct-2022
  • (2022)Convolutional Neural Network with Hidden Markov Model to Identify Non-severe Traumatic Brain Injury from ElectroencephalographyProceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications10.1007/978-981-16-8129-5_70(455-460)Online publication date: 1-Jan-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
EEET 2019: Proceedings of the 2019 2nd International Conference on Electronics and Electrical Engineering Technology
September 2019
160 pages
ISBN:9781450372145
DOI:10.1145/3362752
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

  • USM: Universiti Sains Malaysia

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 September 2019

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Biomedical signal processing
  2. Feature extraction
  3. Machine learning
  4. Moderate traumatic brain injury
  5. Power feature
  6. Resting state electroencephalography

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

EEET 2019

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Prediction of Recovery from Traumatic Brain Injury with EEG Power Spectrum in Combination of Independent Component Analysis and RUSBoost ModelBioMedInformatics10.3390/biomedinformatics20100072:1(106-123)Online publication date: 6-Jan-2022
  • (2022)Traumatic Brain Injury (TBI) Detection: Past, Present, and FutureBiomedicines10.3390/biomedicines1010247210:10(2472)Online publication date: 3-Oct-2022
  • (2022)Convolutional Neural Network with Hidden Markov Model to Identify Non-severe Traumatic Brain Injury from ElectroencephalographyProceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications10.1007/978-981-16-8129-5_70(455-460)Online publication date: 1-Jan-2022
  • (2021)Current uses, emerging applications, and clinical integration of artificial intelligence in neuroradiologyReviews in the Neurosciences10.1515/revneuro-2021-010133:4(383-395)Online publication date: 10-Sep-2021
  • (2021)Convolutional Neural Network Utilizing Error-Correcting Output Codes Support Vector Machine for Classification of Non-Severe Traumatic Brain Injury From Electroencephalogram SignalIEEE Access10.1109/ACCESS.2021.30567249(24946-24964)Online publication date: 2021
  • (2020)Classification of Non-Severe Traumatic Brain Injury from Resting-State EEG Signal Using LSTM Network with ECOC-SVMSensors10.3390/s2018523420:18(5234)Online publication date: 14-Sep-2020
  • (2020)Detection of Moderate Traumatic Brain Injury from Resting-State Eye-Closed ElectroencephalographyComputational Intelligence and Neuroscience10.1155/2020/89239062020Online publication date: 1-Jan-2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media