skip to main content
10.1145/3362752.3365194acmotherconferencesArticle/Chapter ViewAbstractPublication PageseeetConference Proceedingsconference-collections
research-article

Structural Analysis to Evaluate the Design of a Synthetic Mitral Valve Prosthesis

Authors Info & Claims
Published:25 September 2019Publication History

ABSTRACT

Synthetic heart valves restore the functioning of a diseased valve better than mechanical and biological valves. Its biocompatibility and superior flexibility ispreferred for the replacement of diseased mitral valve. Considering the anatomical and hemodynamic limitations of the mitral valve, synthetic valves will be able to perform better than mechanical or biological valves. In this computational study, models of segmented polyurethane valves with varying leaflet configuration were designed.The bileaflet, trileaflet and quadrileaflet modelswere subjected to linear structural analysis to determine its durability and flexibility. The leaflet models were simulated to operate against atransvavular pressure gradient of 30mmHg (systolic pressure) and 120mmHg (diastolic pressure). The output in the form of von Misesstress distribution pattern for each of the leaflet model was obtained. The trileaflet and quadrileaflet configurationshowed better functionality in comparison to bileaflet valve. The outcome of this study is the basis for the development of a low profiled, transcatheter mitral valve replacement device, with superior durability and flexibility.

References

  1. Alkhouli, M., Alqahtani, F. and Aljohani, S. 2017. Transcatheter mitral valve replacement: an evolution of a revolution. Journal of Thoracic Disease. 9, S7 (Jun. 2017), S668--S672. DOI:https://doi.org/10.21037/jtd.2017.05.60.Google ScholarGoogle ScholarCross RefCross Ref
  2. Benjamin Emelia J. et al. 2018. Heart Disease and Stroke Statistics---2018 Update: A Report From the American Heart Association. Circulation. 137, 12 (Mar. 2018), e67--e492. DOI:https://doi.org/10.1161/CIR.0000000000000558.Google ScholarGoogle Scholar
  3. Bezuidenhout, D., Williams, D.F. and Zilla, P. 2015. Polymeric heart valves for surgical implantation, catheterbased technologies and heart assist devices. Biomaterials. 36, (Jan. 2015), 6--25. DOI:https://doi.org/10.1016/j.biomaterials.2014.09.013.Google ScholarGoogle Scholar
  4. Bozkurt, S., Preston-Maher, G.L., Torii, R. and Burriesci, G. 2017. Design, Analysis and Testing of a Novel Mitral Valve for Transcatheter Implantation. Annals of Biomedical Engineering. 45, 8 (Aug. 2017), 1852--1864. DOI:https://doi.org/10.1007/s10439-017-1828-2.Google ScholarGoogle ScholarCross RefCross Ref
  5. Burriesci, G., Marincola, F.C. and Zervides, C. 2010. Design of a novel polymeric heart valve. Journal of Medical Engineering & Technology. 34, 1 (Jan. 2010), 7--22. DOI:https://doi.org/10.3109/03091900903261241.Google ScholarGoogle ScholarCross RefCross Ref
  6. De Gaetano, F., Bagnoli, P., Zaffora, A., Pandolfi, A., Serrani, M., Brubert, J., Stasiak, J., Moggridge, G.D. and Costantino, M.L. 2015. A newly developed tri-leaflet polymeric heart valve prosthesis. Journal of Mechanics in Medicine and Biology. 15, 02 (Apr. 2015), 1540009. DOI:https://doi.org/10.1142/S0219519415400096.Google ScholarGoogle ScholarCross RefCross Ref
  7. Gallocher, S.L., Aguirre, A.F., Kasyanov, V., Pinchuk, L. and Schoephoerster, R.T. 2006. A novel polymer for potential use in a trileaflet heart valve. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 79B, 2 (Nov. 2006), 325--334. DOI:https://doi.org/10.1002/jbm.b.30546.Google ScholarGoogle ScholarCross RefCross Ref
  8. Ghista, D.N. and Reul, H. 1977. Optimal prosthetic aortic leaflet valve: Design parametric and longevity analyses: Development of the avcothane-51 leaflet valve based on the optimum design analysis. Journal of Biomechanics. 10, 5 (Jan. 1977), 313--324. DOI:https://doi.org/10.1016/0021- 9290(77)90004-5.Google ScholarGoogle ScholarCross RefCross Ref
  9. Grünwald, A., Egron, S., Groß-Hardt, S. and Steinseifer, U. 2018. TCT-250 A Novel Large-Size Transcatheter Pulmonary Heart Valve Prosthesis for Patients with Pulmonary Regurgitation. Journal of the American College of Cardiology. 72, 13 Supplement (Sep. 2018), B104. DOI:https://doi.org/10.1016/j.jacc.2018.08.1379.Google ScholarGoogle ScholarCross RefCross Ref
  10. Haj-Ali, R., Dasi, L.P., Kim, H.-S., Choi, J., Leo, H.W. and Yoganathan, A.P. 2008. Structural simulations of prosthetic tri-leaflet aortic heart valves. Journal of Biomechanics. 41, 7 (Jan. 2008), 1510--1519. DOI:https://doi.org/10.1016/j.jbiomech.2008.02.026.Google ScholarGoogle ScholarCross RefCross Ref
  11. Hart, J.D., Cacciola, G., Schreurs, P.J.G. and Peters, G.W.M. 1998. A three-dimensional analysis of a fibre-reinforced aortic valve prosthesis. Journal of Biomechanics. 31, 7 (Jul. 1998), 629--638. DOI:https://doi.org/10.1016/S0021- 9290(98)00063-3.Google ScholarGoogle ScholarCross RefCross Ref
  12. Ho, S.Y. 2002. Anatomy of the mitral valve. Heart. 88, suppl 4 (2002), iv5--iv10.Google ScholarGoogle Scholar
  13. Jeevan, R.R. and Murari, B.M. 2017. Engineering challenges and the future prospects of transcatheter mitral valve replacement technologies: a comprehensive review of case studies. Expert Review of Medical Devices. 14, 4 (Apr. 2017), 297--307. DOI:https://doi.org/10.1080/17434440.2017.1305267.Google ScholarGoogle ScholarCross RefCross Ref
  14. Kim, H., Lu, J., Sacks, M.S. and Chandran, K.B. 2008. Dynamic Simulation of Bioprosthetic Heart Valves Using a Stress Resultant Shell Model. Annals of Biomedical Engineering. 36,2 (Feb. 2008), 262--275. DOI:https://doi.org/10.1007/s10439-007-9409-4.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kütting, M., Roggenkamp, J., Urban, U., Schmitz-Rode, T. and Steinseifer, U. 2011. Polyurethane heart valves: past, present and future. Expert Review of Medical Devices. 8, 2 (Mar.2011), 227--233. DOI:https://doi.org/10.1586/erd.10.79.Google ScholarGoogle ScholarCross RefCross Ref
  16. Lau, K.D., Diaz, V., Scambler, P. and Burriesci, G. 2010. Mitral valve dynamics in structural and fluid--structure interaction models. Medical Engineering & Physics. 32, 9 (Nov.2010), 1057--1064. DOI:https://doi.org/10.1016/j.medengphy.2010.07.008.Google ScholarGoogle ScholarCross RefCross Ref
  17. Mackay, T.G., Wheatley, D.J., Bernacca, G.M., Fisher, A.C. and Hindle, C.S. 1996. New polyurethane heart valve prosthesis: design, manufacture and evaluation. Biomaterials. 17, 19 (Oct. 1996), 1857--1863. DOI:https://doi.org/10.1016/0142-9612(95)00242-1.Google ScholarGoogle ScholarCross RefCross Ref
  18. MahendraNath, G., Makana, M. and Rao, P.C. Modelling and Analysisof Mitral Valve Implantation Using Finite Element Analysis. International Journal of Advance Research in Science and Engineering. Vol 7, No.2 (Feb.2018), 1038--1046.Google ScholarGoogle Scholar
  19. Mohammadi, H. and Mequanint, K. 2011. Prosthetic aortic heart valves: Modeling and design. Medical Engineering & Physics.33,2(Mar.2011), 131--147. DOI:https://doi.org/10.1016/j.medengphy.2010.09.017.Google ScholarGoogle Scholar
  20. Osorio, R.C., Freitas Souza, F.S. de, Novaes de Andrade, M., Camara de Freitas, B., Rodrigues Duraes, A. and Marinho, R.S. 2016. Valvular Heart Diseases - Epidemiology and New Treatment Modalities. Interventional Cardiology Journal. 02, 01 (2016). DOI:https://doi.org/10.21767/2471-8157.100012.Google ScholarGoogle ScholarCross RefCross Ref
  21. Pibarot, P. and Dumesnil, J.G. 2009. Prosthetic Heart Valves: Selection of the Optimal Prosthesis and Long-Term Management. Circulation. 119, 7 (Feb. 2009), 1034--1048. DOI:https://doi.org/10.1161/CIRCULATIONAHA.108.7788 86.Google ScholarGoogle Scholar
  22. Rodrigues, L.T.S., Silva, L.C.E., Machado, L.C., Greco, M. and Gélape, C.L. April 2016. Simulations of Artificial Biological Heart Valves with ANSYS.http://volitans.wix.com/essschallenge. Technical report. DOI: 10.13140/RG.2.1.3146.7925Google ScholarGoogle Scholar
  23. Schindler J. G. and v. Gülich M. 2009. Technologien für elektrochemische Festkontakt-Katheter-Sensoren und Teleskop-Katheter-Elektroden-Systeme zur Bestimmung von Ca++, K+, Na+, Cl-, Harnstoff, pH, O2 und CO2 - Technology of Electrochemical Solid-Contact Catheter Sensors and Telescope Catheter Electrode Systems for the Measurement of Ca++, K+, Na+, Cl-, Urea, pH, O2 and CO2. Biomedizinische Technik/Biomedical Engineering. 26, 3(2009), 43. DOI:https://doi.org/10.1515/bmte.1981.26.3.43.Google ScholarGoogle Scholar
  24. Shen, X., Wang, T., Cao, X. and Cai, L. 2017. The geometric model of the human mitral valve. PLOS ONE. 12, 8(Aug.2017),e0183362. DOI:https://doi.org/10.1371/journal.pone.0183362.Google ScholarGoogle Scholar
  25. Wang, J.-G., Kuai, X.-C., Ren, B.-Q., Gong, G.-F. and Zhou, X.-M. 2013. Reduced Leaflet Stress in the Stentless Quadrileaflet Mitral Valve: A Finite Element Model. PLoS ONE. 8,7(Jul.2013),e67683. DOI:https://doi.org/10.1371/journal.pone.0067683.Google ScholarGoogle Scholar

Index Terms

  1. Structural Analysis to Evaluate the Design of a Synthetic Mitral Valve Prosthesis

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          EEET 2019: Proceedings of the 2019 2nd International Conference on Electronics and Electrical Engineering Technology
          September 2019
          160 pages
          ISBN:9781450372145
          DOI:10.1145/3362752

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 25 September 2019

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited
        • Article Metrics

          • Downloads (Last 12 months)2
          • Downloads (Last 6 weeks)1

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader