skip to main content
research-article

Automatic Stage-form Circuit Reduction for Multistage Opamp Design Equation Generation

Published:31 October 2019Publication History
Skip Abstract Section

Abstract

An automatic stage-form circuit reduction method for multistage operational amplifiers (opamps) is proposed. A tool based on this method can reduce a multistage opamp into a condensed stage-form macromodel, from which design equations can be generated automatically by another existing symbolic program. The proposed model generation method is fully symbolic; namely, it does not make reference to any numerical device values with a circuit, hence it does not require circuit biasing and sizing at an early design stage. The parameters coming with the generated models are dominant-effect approximation of the stage-related characteristics of the original circuits and thus are visually readable for design reasoning. Compensations in the original circuits are extracted automatically and reserved in the macromodel circuits. The user of this tool is only required to input the circuit stage information by identifying several key devices in the original circuits. As design equations can also be automatically generated from stage-form macromodels by a purely symbolic method, the proposed model generation method completes the path from a transistor-level opamp circuit to its characteristic design equations in a completely formal way. Examples are provided to demonstrate the effectiveness of the proposed model generation method, and numerical validation is further carried out to verify that the reduced symbolic models can successfully capture the key circuit behavior in the frequency domain for multistage opamps.

References

  1. P. E. Allen. 1983. Automated design of MOS op amps. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’83). 1286--1289.Google ScholarGoogle Scholar
  2. P. E. Allen. 1986. A tutorial—Computer aided design of analog integrated circuits. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC’86). 608--616.Google ScholarGoogle Scholar
  3. R. J. Bowman and D. J. Lane. 1986. A knowledge-based system for analog integrated circuit design. In Proceedings of the IEEE International Conference on Computer-Aided Design (ICCAD’86). 210--212.Google ScholarGoogle Scholar
  4. R. Brayton, G. Hachtel, and A. Sangiovanni-Vincentelli. 1981. A survey of optimization techniques for integrated circuit design. Proc. IEEE 69, 10 (1981), 1334--1362.Google ScholarGoogle ScholarCross RefCross Ref
  5. E. Cabrera-Bernal, S. Pennisi, A. D. Grasso, A. Torralba, and R. G. Carnajal. 2016. 0.7-V three-stage class-AB CMOS operational transconductance amplifier. IEEE Trans. Circ. Syst. I: Regul. Pap. 63, 11 (2016), 1807--1815.Google ScholarGoogle ScholarCross RefCross Ref
  6. L. R. Carley and R. A. Rutenbar. 1988. How to automate analog IC designs. IEEE Spectrum (1988), 26--30.Google ScholarGoogle Scholar
  7. S. S. Chong and P. K. Chan. 2012. Cross feedforward cascode compensation for low-power three-stage amplifier with large capacitive load. IEEE J. Solid-State Circ. 47, 9 (2012), 2227--2234.Google ScholarGoogle ScholarCross RefCross Ref
  8. W. Daems, G. Gielen, and W. Sansen. 2002. Circuit simplification for the symbolic analysis of analog integrated circuits. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 21, 4 (2002), 395--406.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. G. Debyser and G. Gielen. 1998. Efficient analog circuit synthesis with simultaneous yield and robustness optimization. In Proceedings of the ACM/IEEE International Conference Computer-Aided Design (ICCAD’98). 308--311.Google ScholarGoogle Scholar
  10. M. G. R. Degrauwe, B. L. Goffart, C. Meixenberger, M. L. A. Pierre, J. B. Litsios, J. Rijmenants, O. J. A. P. Nys, E. Dijkstra, B. J. Myriam, C. M. Meyvaert, T. R. Schwarz, and M. D. Pardoen. 1989. Towards an analog system design environment. IEEE J. Solid State Circ. 24, 3 (1989), 659--671.Google ScholarGoogle ScholarCross RefCross Ref
  11. F. Constantinescu, M. Nitescu, and C. V. Marin. 2004. Computation of approximate symbolic pole/zero expressions. Analog Inegr. Circ. Sign. Process. 40 (2004), 255--264.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. X. Fan, C. Mishra, and E. Sánchez-Sinencio. 2005. Single Miller capacitor frequency compensation technique for low-power multistage amplifiers. IEEE J. Solid-State Circ. 40, 3 (2005), 584--592.Google ScholarGoogle ScholarCross RefCross Ref
  13. G. E. Gielen, H. Walscharts, and W. Sansen. 1990. Analog circuit design optimization based on symbolic simulation and simulated annealing. IEEE J. Solid-State Circ. 25, 3 (1990), 707--713.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. Grasso, G. Palumbo, and S. Pennisi. 2007. Advances in reversed nested Miller compensation. IEEE Trans. Circ. Syst. I: Regul. Pap. 54, 7 (2007), 1459--1470.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. D. Grasso, D. Marano, G. Palumbo, and S. Pennisi. 2007. Improved reversed nested Miller compensation technique with voltage buffer and nulling resistor. IEEE Trans. Circ. Syst. II: Expr. Briefs 54, 5 (2007), 382--386.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. D. Grasso, D. Marano, G. Palumbo, and S. Pennisi. 2018. High-performance three-stage single-Miller CMOS OTA with no upper limit of . IEEE Trans. Circuits Syst. II: Expr. Briefs 65, 11 (2018), 1529--1533.Google ScholarGoogle ScholarCross RefCross Ref
  17. A. D. Grasso, G. Palumbo, and S. Pennisi. 2015. High-performance four-stage CMOS OTA suitable for large capacitive loads. IEEE Trans. Circ. Syst. I: Regul. Pap. 62, 10 (2015), 2476--2487.Google ScholarGoogle ScholarCross RefCross Ref
  18. Y. Gu and G. Shi. 2015. An interactive program for automatic network function generation with insights. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’15). 1810--1813.Google ScholarGoogle Scholar
  19. O. Guerra, E. Roca, F. V. Fernández, and A. Rodríguez-Vázquez. 2002. Approximate symbolic analysis of hierarchically decomposed analog circuits. Analog Integr. Circ. Sign. Process. 31 (2002), 131--145.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. O. Guerra, J. D. Rodríguez-García, F. V. Fernández, and A. Rodríguez-Vázquez. 2002. A symbolic pole/zero extraction methodology based on analysis of circuit time-constants. Analog Integr. Circ. Sign. Process. 31 (2002), 101--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Guo and H. Lee. 2011. Dual active-capacitive-feedback compensation for low-power large-capacitive-load three-stage amplifiers. IEEE J. Solid-State Circ. 46, 2 (2011), 452--464.Google ScholarGoogle ScholarCross RefCross Ref
  22. R. Harjani, R. A. Rutenbar, and L. R. Carley. 1987. A prototype framework for knowledge-based analog circuit synthesis. In Proceedings of the Design, Automation Conference (DAC’87). 42--49.Google ScholarGoogle Scholar
  23. R. Harjani, R. A. Rutenbar, and L. R. Carley. 1989. OASYS: A framework for analog circuit synthesis. IEEE Trans. Comput.-Aid. Des. 8, 12 (1989), 1247--1265.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. P. Harvey, M. I. Elmasry, and B. Leung. 1992. STAIC: An interactive framework for synthesizing CMOS and BiCMOS analog circuits. IEEE Trans. Comput.-Aid. Des. 11, 11 (1992), 1402--1417.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. E. Hennig. 2000. Symbolic Approximation and Modeling Techniques for Analysis and Design of Analog Circuits. Shaker Verlag, Aachen, Germany.Google ScholarGoogle Scholar
  26. M. Hershenson, S. Boyd, and T. Lee. 2001. Optimal design of a CMOS op-amp via geometric programming. IEEE Trans. Comput.-Aid. Des. Circ. Syst. 20, 1 (2001), 1--21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. K. P. Ho, C. F. Chan, C. S. Choy, and K. P. Pun. 2003. Reversed nested Miller compensation with voltage buffer and nulling resistor. IEEE J. Solid-State Circ. 38, 10 (2003), 1735--1738.Google ScholarGoogle ScholarCross RefCross Ref
  28. J. Hsu and C. Sechen. 1995. Accurate extraction of simplified symbolic pole/zero expressions for large analog IC’s. In Proceedings of the IEEE International Symposium Circuits and Systems. 2083--2087.Google ScholarGoogle Scholar
  29. H. Y. Koh, C. H. Séquin, and P. R. Gray. 1990. OPASYN: A compiler for CMOS operational amplifiers. IEEE Trans. Comput.-Aid. Des. 9, 2 (1990), 113--125.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. R. Koza, F. H. Bennett, D. Andre, M. A. Keane, and F. Dunlap. 1997. Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Trans. Evol. Comput. 1, 2 (1997), 109--128.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. H. Lee, K. N. Leung, and P. K. T. Mok. 2003. A dual-path bandwidth extension amplifier topology with dual-loop parallel compensation. IEEE J. Solid-State Circ. 38, 10 (2003), 1739--1744.Google ScholarGoogle ScholarCross RefCross Ref
  32. H. Lee and P. K. T. Mok. 2003. Active-feedback frequency-compensation for low-power multistage amplifiers. IEEE J. Solid-State Circ. 38, 3 (2003), 511--520.Google ScholarGoogle ScholarCross RefCross Ref
  33. H. Lee and P. K. T. Mok. 2004. Advances in active-feedback frequency compensation with power optimization and transient improvement. IEEE Trans. Circ. Syst. I: Regul. Pap. 51, 9 (2004), 1690--1698.Google ScholarGoogle ScholarCross RefCross Ref
  34. K. N. Leung and P. K. T. Mok. 2001. Analysis of multistage amplifier—Frequency compensation. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 48, 9 (2001), 1041--1056.Google ScholarGoogle ScholarCross RefCross Ref
  35. K. N. Leung, P. K. T. Mok, W. Ki, and J. Sin. 2000. Three-stage large capacitive load amplifier with dumping-factor-control frequency compensation. IEEE J. Solid-State Circ. 35, 2 (2000), 221--230.Google ScholarGoogle ScholarCross RefCross Ref
  36. S. Liu, Z. Zhu, J. Wang, L. Liu, and Y. Yang. 2019. A 1.2-V 2.41-GHz three-stage CMOS OTA with efficient frequency compensation technique. IEEE Trans. Circ. Syst. I: Regul. Pap. 66, 1 (2019), 20--30.Google ScholarGoogle ScholarCross RefCross Ref
  37. N. Lourenço, R. Martins, and N. Horta. 2017. Automatic Analog IC Sizing and Optimization Constrained with PVT Corners and Layout Effects. Springer, New York.Google ScholarGoogle Scholar
  38. C. A. Makris and C. Toumazou. 1995. Analog IC design automation part II -- Automated circuit correction by qualitative reasoning. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 14, 2 (1995), 239--254.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. D. Marano, A. D. Grasso, G. Palumbo, and S. Pennisi. 2016. Optimized active single-Miller capacitor compensation with inner half-feedforward stage for very high-load three-stage OTAs. IEEE Trans. Circ. Syst. I: Regul. Pap. 63, 9 (2016), 1349--1359.Google ScholarGoogle ScholarCross RefCross Ref
  40. T. Massier, H. Graeb, and U. Schlichtmann. 2008. The sizing rules method for CMOS and bipolar analog integrated circuit synthesis. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 27, 12 (2008), 2209--2222.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. R. Mita, G. Palumbo, and S. Pennisi. 2003. Design guidelines for reversed nested Miller compensation in three-stage amplifiers. IEEE Trans. Circ. Syst. II: Analog Dig. Sign. Process. 50, 5 (2003), 227--233.Google ScholarGoogle ScholarCross RefCross Ref
  42. G. Nebel, U. Kleine, and H. J. Pfleiderer. 1995. Symbolic pole/zero calculation using SANTAFE. IEEE J. Solid-State Circ. 30, 7 (1995), 752--761.Google ScholarGoogle ScholarCross RefCross Ref
  43. NgSpice. 2019. NGSPICE—Open source SPICE simulator. Retrieved from http://ngspice.sourceforge.net/.Google ScholarGoogle Scholar
  44. W. Nye, D. C. Riley, A. Sangiovanni-Vincentelli, and A. L. Tits. 1988. DELIGHT.SPICE: An optimization-based system for the design of integrated circuits. IEEE Trans. Comput.-Aid. Des. 7, 4 (1988), 501--519.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. E. S. Ochotta, R. Rutenbar, and L. R. Carley. 1996. Synthesis of high-performance analog circuits in ASTRX/OBLX. IEEE Trans. Comput.-Aid. Des. 15, 3 (1996), 273--294.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. G. Palmisano and G. Palumbo. 1995. An optimized compensation strategy for two-stage CMOS op amps. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 42, 3 (1995), 178--182.Google ScholarGoogle ScholarCross RefCross Ref
  47. G. Palmisano and G. Palumbo. 1997. A compensation strategy for two-stage CMOS op amps based on current buffer. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 44, 3 (1997), 257--262.Google ScholarGoogle ScholarCross RefCross Ref
  48. G. Palumbo and S. Pennisi. 2002. Design methodology and advances in nested-Miller compensation. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 49, 7 (2002), 893--903.Google ScholarGoogle ScholarCross RefCross Ref
  49. X. Peng and W. Sansen. 2004. AC boosting compensation scheme for low power multistage amplifiers. IEEE J. Solid-State Circ. 39, 11 (2004), 2074--2077.Google ScholarGoogle ScholarCross RefCross Ref
  50. X. Peng and W. Sansen. 2005. Transconductance with capacitances feedback compensation for multistage amplifiers. IEEE J. Solid-State Circ. 40, 7 (2005), 1515--1520.Google ScholarGoogle Scholar
  51. X. Peng, W. Sansen, L. Hou, J. Wang, and W. Wu. 2011. Impedance adapting compensation for low-power multistage amplifiers. IEEE J. Solid-State Circ. 46, 2 (2011), 445--451.Google ScholarGoogle ScholarCross RefCross Ref
  52. R. Phelps, M. Krasnicki, R. A. Rutenbar, R. Carley, and J. R. Hellums. 2000. Anaconda: Simulation-based synthesis of analog circuits via stochastic pattern search. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 19, 6 (2000), 703--717.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. R. A. Rutenbar. 1993. Analog design automation: Where are we? Where are we going. In Proceedings of the 15th IEEE Custom Integrated Circuit Conference (CICC’93). 13.1.1--13.1.8.Google ScholarGoogle ScholarCross RefCross Ref
  54. R. Schwencker, J. Eckmueller, H. Graeb, and K. Antreich. 1999. Automating the sizing of analog CMOS circuits by consideration of structure constraints. In Proceedings of the Design, Automation and Test in Europe (DATE’99). 323--327.Google ScholarGoogle Scholar
  55. B. J. Sheu, A. H. Fung, and Y. H. Lai. 1988. A knowledge-based approach to analog IC design. IEEE Trans. Circ. Syst. 35, 2 (1988), 256--258.Google ScholarGoogle ScholarCross RefCross Ref
  56. G. Shi. 2013. Graph-pair decision diagram construction for topological symbolic circuit analysis. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 32, 2 (2013), 275--288.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. G. Shi. 2017. Topological approach to symbolic pole-zero extraction incorporating design knowledge. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 36, 11 (2017), 1765--1778.Google ScholarGoogle ScholarCross RefCross Ref
  58. G. Shi. 2018a. Generating the closed-form second-order characteristics of analog differential cells by symbolic perturbation. IEEE Trans. Circ. Syst. I: Regul. Pap. 65, 9 (2018a), 2939--2950.Google ScholarGoogle Scholar
  59. G. Shi. 2018b. Toward automated reasoning for analog IC design by symbolic computation—A survey. VLSI J. 60 (2018b), 117--131.Google ScholarGoogle Scholar
  60. G. Shi. 2019. Symbolic distortion analysis of multistage amplifiers. IEEE Trans. Circ. Syst. I: Regul. Pap. 66, 1 (2019), 369--382.Google ScholarGoogle ScholarCross RefCross Ref
  61. G. Shi, B. Hu, and C. J. R. Shi. 2006. On symbolic model order reduction. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 25, 7 (2006), 1257--1272.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. G. Shi, H. Hu, and S. Deng. 2017. Topological approach to automatic symbolic macromodel generation for analog ICs. ACM Trans. Des. Autom. Electr. Syst. 22, 3 (2017), 47.Google ScholarGoogle Scholar
  63. J. Shyu and A. Sangiovanni-Vincentelli. 1988. ECSTASY: A new environment for IC design optimization. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’88). 484--487.Google ScholarGoogle Scholar
  64. K. Swings, G. Gielen, and W. Sansen. 1990. An intelligent analog IC design system based on manipulation of design equations. In Proceedings of the IEEE Custon Integrated Circuits Conference (CICC’90). 8.6.1--8.6.4.Google ScholarGoogle Scholar
  65. K. Swings and W. Sansen. 1993. ARIADNE: A constraint-based approach to computer-aided synthesis and modeling of analog integrated circuits. Analog Integr. Circ. Sign. Process. 3 (1993), 197--215.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. B. K. Thandri and J. Silva-Martínez. 2003. A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no Miller capacitors. IEEE J. Solid-State Circ. 38, 2 (2003), 237--243.Google ScholarGoogle ScholarCross RefCross Ref
  67. A. Torralba, J. Chávez, and L. G. Franquelo. 1996. FASY: A fuzzy-logic based tool for analog synthesis. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 15, 7 (1996), 705--715.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. G. Van der Plas, G. Debyser, F. Leyn, K. Lampaert, J. Vandenbussche, G. G. E. Gielen, W. Sansen, P. Veselinovic, and D. Leenaerts. 2001. AMGIE—A synthesis environment for CMOS analog integrated circuits. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 20, 9 (2001), 1037--1058.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. P. Wambacq, R. Fernández, G. E. Gielen, W. Sansen, and A. Rodriguez-Vázquez. 1995. Efficient symbolic computation of approximated small-signal characteristics. IEEE J. Solid-State Circ. 30, 3 (1995), 327--330.Google ScholarGoogle ScholarCross RefCross Ref
  70. Z. Yan, P.-I. Mak, M.-K. Lau, and R. P. Martins. 2013. A 0.016-mm2 144-μW three-stage amplifier capable of driving 1-to-15 nF capacitive load with 0.95-MHz GBW. IEEE J. Solid-State Circ. 48, 2 (2013), 527--540.Google ScholarGoogle ScholarCross RefCross Ref
  71. H. Yu and G. Shi. 2017. Developing a web-based symbolic circuit analysis tool for learning and design aid. In Proceedings of the 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD’17). 1--4.Google ScholarGoogle Scholar
  72. H. Yu and G. Shi. 2018. Symbolic circuit reduction for multistage amplifier macromodeling. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS’18). 247--250.Google ScholarGoogle Scholar
  73. H. Zhang and G. Shi. 2011. Symbolic behavioral modeling for slew and settling analysis of operational amplifiers. In Proceedings of the IEEE 54th Midwest Symposium on Circuits and Systems. 1--4.Google ScholarGoogle Scholar

Index Terms

  1. Automatic Stage-form Circuit Reduction for Multistage Opamp Design Equation Generation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format