skip to main content
10.1145/3364908.3365288acmotherconferencesArticle/Chapter ViewAbstractPublication PagessspsConference Proceedingsconference-collections
research-article

Towards Automated Emotional Conversation Generation with Implicit and Explicit Affective Strategy

Authors Info & Claims
Published:20 September 2019Publication History

ABSTRACT

Building an empathic conversation machine in open-domain is a promising research topic in natural language processing. However, most current approaches rely on designated emotions to conduct generating responses and lack the ability to decide the appropriate emotion strategy. In this paper, we propose a dialogue model of jointly predicting and generating emotions called DRCVAE, which stands for Decoupled Representations of Conditional Variational Autoencoders.

More specifically, the model separates the latent variable in conditional variational autoencoders (CVAE) into two parts: emotion and content. Then the latent emotional strategy (implicit) is further forced to predict the target emotion probability distribution (explicit). By using implicit and explicit emotional strategy, a newly designed paired decoder incorporates rich control information to decode the response. Experiment results demonstrate that DRCVAE provides an effective way to infer target emotions and generate high-quality responses simultaneously.

References

  1. Mayer, J. D., & Geher, G. (1996). Emotional intelligence and the identification of emotion. Intelligence, 22(2), 89--113.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., & Bengio, S. (2015). Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349.Google ScholarGoogle Scholar
  3. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735--1780.Google ScholarGoogle Scholar
  5. Hu, X., Tang, J., Gao, H., & Liu, H. (2013, May). Unsupervised sentiment analysis with emotional signals. In Proceedings of the 22nd international conference on World Wide Web (pp. 607--618). ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jiang, L., Yu, M., Zhou, M., Liu, X., & Zhao, T. (2011, June). Target-dependent twitter sentiment classification. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1 (pp. 151--160). Association for Computational Linguistics.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.Google ScholarGoogle Scholar
  8. Kingma, D. P., & Welling, M. (2013). Autoencoding variational bayes. arXiv preprint arXiv:1312.6114.Google ScholarGoogle Scholar
  9. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097--1105).Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Larsen, A. B. L., Sønderby, S. K., Larochelle, H., & Winther, O. (2015). Autoencoding beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300.Google ScholarGoogle Scholar
  11. Moore, B. (1981). Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE transactions on automatic control, 26(1), 17--32.Google ScholarGoogle Scholar
  12. Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up? sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10(pp. 79--86). Association for Computational Linguistics.Google ScholarGoogle Scholar
  13. Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082.Google ScholarGoogle Scholar
  14. Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673--2681.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Serban, I. V., Sordoni, A., Bengio, Y., Courville, A. C., & Pineau, J. (2016, February). Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models. In AAAI (Vol. 16, pp. 3776--3784).Google ScholarGoogle Scholar
  16. Shang, L., Lu, Z., & Li, H. (2015). Neural responding machine for short-text conversation. arXiv preprint arXiv:1503.02364.Google ScholarGoogle Scholar
  17. Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using deep conditional generative models. In Advances in Neural Information Processing Systems (pp. 3483--3491).Google ScholarGoogle Scholar
  18. Sun, X., Zhang, C., & Li, L. (2019). Dynamic emotion modelling and anomaly detection in conversation based on emotional transition tensor. Information Fusion, 46, 11--22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Tallec, C., & Ollivier, Y. (2018). Can recurrent neural networks warp time? arXiv preprint arXiv:1804.11188.Google ScholarGoogle Scholar
  20. Wawre, S. V., & Deshmukh, S. N. (2016). Sentiment classification using machine learning techniques. International Journal of Science and Research (IJSR), 5(4), 819--821.Google ScholarGoogle ScholarCross RefCross Ref
  21. Wen, T. H., Miao, Y., Blunsom, P., & Young, S. (2017, July). Latent Intention Dialogue Models. In International Conference on Machine Learning (pp. 3732--3741).Google ScholarGoogle Scholar
  22. van der Westhuizen, J., & Lasenby, J. (2018). The unreasonable effectiveness of the forget gate. arXiv preprint arXiv:1804.04849.Google ScholarGoogle Scholar
  23. Xu, Linhong, et al. "Constructing the affective lexicon ontology." Journal of the China Society for Scientific and Technical Information 27.2 (2008): 180--185.Google ScholarGoogle Scholar
  24. Zhao, Tiancheng, Ran Zhao, and Maxine Eskenazi. "Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders." Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vol. 1. 2017.Google ScholarGoogle Scholar
  25. Zhou, Hao, et al. "Emotional chatting machine: Emotional conversation generation with internal and external memory." arXiv preprint arXiv:1704.01074 (2017).Google ScholarGoogle Scholar
  26. Zhou, X., & Wang, W. Y. MOJITALK: Generating Emotional Responses at Scale (Supplementary Materials).Google ScholarGoogle Scholar
  27. Asghar, N., Poupart, P., Hoey, J., Jiang, X., & Mou, L. (2018, March). Affective Neural Response Generation. In European Conference on Information Retrieval (pp. 154--166). Springer, Cham.Google ScholarGoogle Scholar

Index Terms

  1. Towards Automated Emotional Conversation Generation with Implicit and Explicit Affective Strategy

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      SSPS '19: Proceedings of the 2019 International Symposium on Signal Processing Systems
      September 2019
      188 pages
      ISBN:9781450362412
      DOI:10.1145/3364908

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 September 2019

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader