skip to main content
10.1145/3366423.3380103acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Measurements, Analyses, and Insights on the Entire Ethereum Blockchain Network

Published: 20 April 2020 Publication History

Abstract

Blockchains are increasingly becoming popular due to the prevalence of cryptocurrencies and decentralized applications. Ethereum is a distributed public blockchain network that focuses on running code (smart contracts) for decentralized applications. More simply, it is a platform for sharing information in a global state that cannot be manipulated or changed. Ethereum blockchain introduces a novel ecosystem of human users and autonomous agents (smart contracts). In this network, we are interested in all possible interactions: user-to-user, user-to-contract, contract-to-user, and contract-to-contract. This requires us to construct interaction networks from the entire Ethereum blockchain data, where vertices are accounts (users, contracts) and arcs denote interactions. Our analyses on the networks reveal new insights by combining information from the four networks. We perform an in-depth study of these networks based on several graph properties consisting of both local and global properties, discuss their similarities and differences with social networks and the Web, draw interesting conclusions, and highlight important, future research directions.

References

[1]
2013. Elliptic. https://www.elliptic.co/.
[2]
2018. Ethereum in BigQuery: a Public Dataset for Smart Contract Analytics. https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics. Accessed: 2010-10-12.
[3]
2019. Ethereum Tokens. https://medium.com/linum-labs/ethereum-tokens-explained-ffe9df918008. Accessed: 2010-10-12.
[4]
L. Adamic, O. Buyukkokten, and E. Adar. 2003. A Social Network Caught in the Web. First Monday 8, 6 (2003).
[5]
Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. 2007. Analysis of Topological Characteristics of Huge Online Social Networking Services. In WWW.
[6]
C. G. Akcora, Y. R. Gel, and M. Kantarcioglu. 2017. Blockchain: A Graph Primer. CoRR abs/1708.08749(2017). arxiv:1708.08749http://arxiv.org/abs/1708.08749
[7]
L. Akoglu, P. O. S. Vaz de Melo, and C. Faloutsos. 2012. Quantifying Reciprocity in Large Weighted Communication Networks. In PAKDD.
[8]
L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley. 2000. Classes of Small-world Networks. Proc. Natl. Acad. Sci. 97, 21 (2000), 11149–11152.
[9]
R. Andersen and K. Chellapilla. 2009. Finding Dense Subgraphs with Size Bounds. In Algorithms and Models for the Web-Graph.
[10]
L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. 2006. Group Formation in Large Social Networks: Membership, Growth, and Evolution. In KDD.
[11]
A.-L. Barabasi and R. Albert. 1999. Emergence of Scaling in Random Networks. Science 286, 5439 (1999), 509–512.
[12]
V. Batagelj and M. Zaveršnik. 2011. Fast Algorithms for Determining (Generalized) Core Groups in Social Networks. Adv. Data Anal. Classif. 5, 2 (2011), 129–145.
[13]
A. R. Benson, D. F. Gleich, and J. Leskovec. 2016. Higher-order Organization of Complex Networks. Science 353, 6295 (2016), 163–166.
[14]
M. Boguna and M. A. Serrano. 2005. Generalized Percolation in Random Directed Networks. Phys. Rev. E 72(2005), 016106. Issue 1.
[15]
F. Bonchi, A. Khan, and L. Severini. 2019. Distance-generalized Core Decomposition. In SIGMOD.
[16]
V. Braitenberg and A. Schuz. 1991. Anatomy of the Cortex: Statistics and Geometry. Springer-Verlag, Berlin.
[17]
S. Brin and L. Page. 1998. The Anatomy of a Large-scale Hypertextual Web Search Engine. In WWW.
[18]
A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener. 2000. Graph Structure in the Web. In WWW.
[19]
A. D. Broido and A. Clauset. 2019. Scale-free Networks Are Rare. Nature Communications 10, 2017 (2019).
[20]
G. Buzsaki and K. Mizuseki. 2014. The Log-dynamic Brain: How Skewed Distributions Affect Network Operations. Nature Rev. Neurosci. 15, 4 (2014), 264–278.
[21]
M. Charikar. 2000. Greedy Approximation Algorithms for Finding Dense Components in a Graph. In Approximation Algorithms for Combinatorial Optimization.
[22]
J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu. 2011. Efficient Core Decomposition in Massive Networks. In ICDE.
[23]
N. Christin. 2013. Traveling the Silk Road: A Measurement Analysis of a Large Anonymous Online Marketplace. In WWW.
[24]
A. Clauset, C. R. Shalizi, and M. E. J. Newman. 2009. Power-Law Distributions in Empirical Data. SIAM Rev. 51, 4 (2009), 661–703.
[25]
J.-P. Eckmann and E. Moses. 2002. Curvature of Co-links Uncovers Hidden Thematic Layers in the World Wide Web. Proceedings of the National Academy of Sciences 99, 9 (2002), 5825–5829.
[26]
D. Eppstein, M. Löffler, and D. Strash. 2010. Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time. In Algorithms and Computation.
[27]
L. Ermann, K. M. Frahm, and D. L. Shepelyansky. 2018. Google Matrix of Bitcoin Network. The European Physical Journal B(2018), 91–127.
[28]
M. Faloutsos, P. Faloutsos, and C. Faloutsos. 1999. On Power-law Relationships of the Internet Topology. SIGCOMM Comput. Commun. Rev. 29, 4 (1999), 251–262.
[29]
S. Ferretti and G. D’Angelo. 2019. On the Ethereum Blockchain Structure: A Complex Networks Theory Perspective. Concurrency and Computation: Practice and Experience (2019), e5493.
[30]
D. Garlaschelli and M. I. Loffredo. 2005. Structure and Evolution of the World Trade Network. Physica A: Statistical Mechanics and its Applications 355, 1(2005), 138–144.
[31]
D. Garlaschelli, F. Ruzzenenti, and R. Basosi. 2010. Complex Networks and Symmetry I: A Review. Symmetry 2(2010), 1683–1709. Issue 3.
[32]
A. Gionis and C. E. Tsourakakis. 2015. Dense Subgraph Discovery. In KDD.
[33]
M. S. Granovetter. 1973. The Strength of Weak Ties. The American Journal of Sociology 78, 6 (1973), 1360–1380.
[34]
A. Greaves and B. Au. 2015. Using the Bitcoin Transaction Graph to Predict the Price of Bitcoin. Technical Report. Stanford.
[35]
C. Grunspan and R. Pérez-Marco. 2019. Selfish Mining and Dyck Words in Bitcoin and Ethereum Networks. CoRR abs/1904.07675(2019). arxiv:1904.07675http://arxiv.org/abs/1904.07675
[36]
A. A. Hagberg, D. A. Schult, and P. J. Swart. 2008. Exploring Network Structure, Dynamics, and Function using NetworkX. In Python in Science Conf.
[37]
B. Haslhofer, R. Karl, and E. Filtz. 2016. O Bitcoin Where Art Thou? Insight into Large-Scale Transaction Graphs. In SEMANTiCS.
[38]
H. Jeong, S. P. Mason, A.-L. Barabasi, and Z. N. Oltvai. 2001. Lethality and Centrality in Protein Networks. Nature 411, 41 (2001), 41–42.
[39]
G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn. 2018. An Empirical Analysis of Anonymity in Zcash. In USENIX Security Symposium.
[40]
J. Kleinberg and S. Lawrence. 2001. The Structure of the Web. Science 294, 5548 (2001), 1849–1850.
[41]
D. Kondor, I. Csabai, J. Szüle, M. Pósfai, and G. Vattay. 2014. Inferring the Interplay between Network Structure and Market Effects in Bitcoin. New Journal of Physics 16 (2014).
[42]
R. Kumar, J. Novak, and A. Tomkins. 2006. Structure and Evolution of Online Social Networks. In KDD.
[43]
R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. 1999. Trawling the Web for Emerging Cyber-communities. In WWW.
[44]
X.T. Lee, A. Khan, S. Sen Gupta, Y.H. Ong, and X. Liu. 2020. Measurements, Analyses, and Insights on the Entire Ethereum Blockchain Network (Dataset). https://github.com/sgsourav/blockchain-network-analysis.
[45]
J. Leskovec and E. Horvitz. 2008. Planetary-scale Views on a Large Instant-messaging Network. In WWW.
[46]
F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Aberg. 2001. The Web of Human Sexual Contacts. Nature 411(2001), 907–908.
[47]
D. W. Matula and L. L. Beck. 1983. Smallest-last Ordering and Clustering and Graph Coloring Algorithms. J. ACM 30, 3 (1983), 417–427.
[48]
S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker, and S. Savage. 2016. A Fistful of Bitcoins: Characterizing Payments among Men with no Names. Commun. ACM 59, 4 (2016), 86–93.
[49]
L. A. Meyers, M. E. J. Newman, and B. Pourbohloul. 2006. Predicting Epidemics on Directed Contact Networks. Journal of Theoretical Biology 240, 3 (2006), 400 – 418.
[50]
S. Milgram. 1967. The Small-World Problem. Psychology Today 1(1967).
[51]
A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. 2008. Growth of the Flickr Social Network. In WOSN.
[52]
A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. 2007. Measurement and Analysis of Online Social Networks. In SIGCOMM IMC.
[53]
M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava, K. Hogan, J. Hennessey, A. Miller, A. Narayanan, and N. Christin. 2018. An Empirical Analysis of Traceability in the Monero Blockchain. PoPETs 2018, 3 (2018), 143–163.
[54]
S. Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf.
[55]
M. E. J. Newman. 2001. The Structure of Scientific Collaboration Networks. Proceedings of the National Academy of Sciences 98, 2 (2001), 404–409.
[56]
M. E. J. Newman. 2002. Assortative Mixing in Networks. Physical Review Letters 89, 20 (2002), 208701.
[57]
M. E. J. Newman. 2003. Properties of Highly Clustered Networks. Phys. Rev. E 68(2003), 026121. Issue 2.
[58]
M. E. J. Newman and J. Park. 2003. Why Social Networks are Different from Other Types of Networks. Physical review. E, Statistical, nonlinear, and soft matter physics 68 3 Pt 2(2003), 036122.
[59]
J. Niu and C. Feng. 2019. Selfish Mining in Ethereum. CoRR abs/1901.04620(2019). arxiv:1901.04620http://arxiv.org/abs/1901.04620
[60]
A. G. Phadke and J. S. Thorp. 1988. Computer Relaying for Power Systems. John Wiley & Sons, Inc., New York, NY, USA.
[61]
F. A. Rodrigues. 2019. Network Centrality: An Introduction.
[62]
D. Ron and A. Shamir. 2013. Quantitative Analysis of the Full Bitcoin Transaction Graph. In Financial Cryptography and Data Security.
[63]
T. Schank and D. Wagner. 2005. Approximating Clustering Coefficient and Transitivity. J. Graph Algorithms Appl. 9, 2 (2005), 265–275.
[64]
S. B. Seidman. 1983. Network Structure and Minimum Degree. Social Networks 5, 3 (1983), 269–287.
[65]
K. Shin, T. Eliassi-Rad, and C. Faloutsos. 2018. Patterns and Anomalies in K-cores of Real-world Graphs with Applications. Knowl. Inf. Syst. 54, 3 (2018), 677–710.
[66]
G. Siganos, S. L. Tauro, and M. Faloutsos. 2006. Jellyfish: A Conceptual Model for the AS Internet Topology. Journal of Communications and Networks 8, 3 (2006), 339–350.
[67]
S. Somin, G. Gordon, and Y. Altshuler. 2018. Network Analysis of ERC20 Tokens Trading on Ethereum Blockchain, In Complex Systems. Springer Proceedings in Complexity, 439–450.
[68]
S. Somin, G. Gordon, and Y. Altshuler. 2018. Social Signals in the Ethereum Trading Network. CoRR abs/1805.12097(2018). arxiv:1805.12097http://arxiv.org/abs/1805.12097
[69]
M. Spagnuolo, F. Maggi, and S. Zanero. 2014. BitIodine: Extracting Intelligence from the Bitcoin Network. In Financial Cryptography and Data Security.
[70]
J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. 2011. The Anatomy of the Facebook Social Graph. CoRR abs/1111.4503(2011).
[71]
F. Victor and B. K. Lüders. 2019. Measuring Ethereum-based ERC20 Token Networks. In Financial Cryptography and Data Security.
[72]
F. Vogelsteller, V. Buterin, [n.d.]. Ethereum Whitepaper. https://github.com/ethereum/wiki/wiki/White-Paper.
[73]
S. Wasserman and K. Faust. 1995. Social Network Analysis: Methods and Applications. University Press.
[74]
C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and B. Y. Zhao. 2009. User Interactions in Social Networks and Their Implications. In EuroSys.
[75]
G. Wood. [n.d.]. Ethereum: A Secure Decentralised Generalised Transaction Ledger. https://github.com/ethereum/yellowpaper.
[76]
S. Y. Yang and J. Kim. 2015. Bitcoin Market Return and Volatility Forecasting Using Transaction Network Flow Properties. In SSCI.
[77]
H. Yousaf, G. Kappos, and S. Meiklejohn. 2019. Tracing Transactions Across Cryptocurrency Ledgers. In USENIX Security Symposium.
[78]
G. Zamora-Lopez, V. Zlatic, C. Zhou, H. Stefancic, and J. Kurths. 2008. Reciprocity of Networks with Degree Correlations and Arbitrary Degree Sequences. Phys. Rev. E 77(2008), 016106. Issue 1.
[79]
V. Zlatic and H. Stefancic. 2009. Influence of Reciprocal Edges on Degree Distribution and Degree Correlations. Phys. Rev. E 80(2009), 016117. Issue 1.
[80]
V. Zlatic and H. Stefancic. 2011. Model of Wikipedia Growth Based on Information Exchange via Reciprocal Arcs. EPL (Europhysics Letters) 93, 5 (2011), 58005.

Cited By

View all
  • (2025)Performance Modeling of Public Permissionless Blockchains: A SurveyACM Computing Surveys10.1145/371509457:7(1-35)Online publication date: 20-Feb-2025
  • (2024)CT-GCN+: a high-performance cryptocurrency transaction graph convolutional model for phishing node classificationCybersecurity10.1186/s42400-023-00194-57:1Online publication date: 1-Feb-2024
  • (2024)Piecing Together the Jigsaw Puzzle of Transactions on Heterogeneous Blockchain NetworksProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/37004248:3(1-27)Online publication date: 10-Dec-2024
  • Show More Cited By

Index Terms

  1. Measurements, Analyses, and Insights on the Entire Ethereum Blockchain Network
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image ACM Conferences
          WWW '20: Proceedings of The Web Conference 2020
          April 2020
          3143 pages
          ISBN:9781450370233
          DOI:10.1145/3366423
          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Sponsors

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          Published: 20 April 2020

          Permissions

          Request permissions for this article.

          Check for updates

          Author Tags

          1. Blockchain
          2. Ethereum
          3. Network Analysis
          4. Smart Contracts
          5. Tokens

          Qualifiers

          • Research-article
          • Research
          • Refereed limited

          Conference

          WWW '20
          Sponsor:
          WWW '20: The Web Conference 2020
          April 20 - 24, 2020
          Taipei, Taiwan

          Acceptance Rates

          Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)125
          • Downloads (Last 6 weeks)14
          Reflects downloads up to 02 Mar 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2025)Performance Modeling of Public Permissionless Blockchains: A SurveyACM Computing Surveys10.1145/371509457:7(1-35)Online publication date: 20-Feb-2025
          • (2024)CT-GCN+: a high-performance cryptocurrency transaction graph convolutional model for phishing node classificationCybersecurity10.1186/s42400-023-00194-57:1Online publication date: 1-Feb-2024
          • (2024)Piecing Together the Jigsaw Puzzle of Transactions on Heterogeneous Blockchain NetworksProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/37004248:3(1-27)Online publication date: 10-Dec-2024
          • (2024)Comparative Analysis of Cryptocurrencies from the Perspective of Complex NetworksProceedings of the 2024 5th International Conference on Computing, Networks and Internet of Things10.1145/3670105.3670181(454-461)Online publication date: 24-May-2024
          • (2024)VM Matters: A Comparison of WASM VMs and EVMs in the Performance of Blockchain Smart ContractsACM Transactions on Modeling and Performance Evaluation of Computing Systems10.1145/36411039:2(1-24)Online publication date: 27-Jan-2024
          • (2024)DenseFlow: Spotting Cryptocurrency Money Laundering in Ethereum Transaction GraphsProceedings of the ACM Web Conference 202410.1145/3589334.3645692(4429-4438)Online publication date: 13-May-2024
          • (2024)ZipZap: Efficient Training of Language Models for Large-Scale Fraud Detection on BlockchainProceedings of the ACM Web Conference 202410.1145/3589334.3645352(2807-2816)Online publication date: 13-May-2024
          • (2024)PaVM: A Parallel Virtual Machine for Smart Contract Execution and ValidationIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2023.333420835:1(186-202)Online publication date: Jan-2024
          • (2024)Blockchain Data Mining With Graph Learning: A SurveyIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2023.332740446:2(729-748)Online publication date: Feb-2024
          • (2024)Block and Transaction Delivery in Ethereum NetworkIEEE Transactions on Network Science and Engineering10.1109/TNSE.2023.331081111:1(926-942)Online publication date: Jan-2024
          • Show More Cited By

          View Options

          Login options

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format.

          HTML Format

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media