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ABSTRACT
Explainability and interpretability are two important concepts, the
absence of which can and should impede the application of well-
performing neural networks to real-world problems. At the same
time, they are difficult to incorporate into the large, black-box mod-
els that achieve state-of-the-art results in a multitude of NLP tasks.
Bidirectional Encoder Representations from Transformers (BERT)
is one such black-box model. It has become a staple architecture
to solve many different NLP tasks and has inspired a number of
related Transformer models. Understanding how these models draw
conclusions is crucial for both their improvement and application.
We contribute to this challenge by presenting VisBERT, a tool for
visualizing the contextual token representations within BERT for
the task of (multi-hop) Question Answering. Instead of analyzing
attention weights, we focus on the hidden states resulting from each
encoder block within the BERT model. This way we can observe
how the semantic representations are transformed throughout the
layers of the model. VisBERT enables users to get insights about
the model’s internal state and to explore its inference steps or po-
tential shortcomings. The tool allows us to identify distinct phases
in BERT’s transformations that are similar to a traditional NLP
pipeline and offer insights during failed predictions.
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1 INTRODUCTION
Understanding black-box models is an increasingly prominent area
of research. While the performance of neural networks has been
steadily improving in nearly every domain, our ability to under-
stand how they work, and how they come to the conclusions they
draw is only improving slowly. In order for large neural networks
to be confidently deployed in safety-critical applications, features
like transparency, interpretability and explainability are paramount.
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Visualizing Transformer’s Internal States. One such class of
black-box models are Transformer models, BERT in particular.
These models have become the state-of-the-art for many differ-
ent NLP tasks in recent months. While their inherent attention
mechanisms offer an avenue for explainability, recent research ar-
gues that attention in fact is not ideal for these purposes, or should
at least not be fully relied upon [3]. We take this as motivation to
investigate an approach that might add complementary informa-
tion. Instead of the attention values, we follow our work in [11]
and visualize the hidden states between each BERT layer, and with
that the token representations, as they are transformed through
the network.

Question Answering and Beyond. The VisBERT tool currently
focuses on analyzing the downstream task of Question Answer-
ing (QA). QA is a complex task that implicitly requires not only
basic language knowledge, but also demands traditional upstream
tasks like Named Entity Recognition, Coreference Resolution and
Relation Extraction. Besides that, the task often requires multiple
inference steps, especially in multi-hop scenarios, which allows us
to gain further insights about BERT’s reasoning process. We use
the three public QA datasets SQuAD [9], HotpotQA [16] and bAbI
QA [15] to show the tool’s applicability on three diverse QA tasks
including multi-hop reasoning cases.
Apart from that, the principle of VisBERT can be easily extended
to other up- or downstream NLP tasks. We publish the underlying
code1 in order to enable researchers and practitioners to insert
their own models or tasks and to analyze them to gain a better
understanding of their inference process. This way potential bi-
ases or other shortcomings can be detected and possibly be resolved.

Contributions. The presented work includes the following con-
tributions towards the goal of better understanding Transformer
networks:

• VisBERT2, an interactive web tool for interpretable visual-
ization of hidden-states within BERT models fine-tuned on
Question Answering.

• Visualizations of the inference process of unseen examples
from three diverse Question Answering datasets, including
three BERT (base and large) models fine-tuned on these sets.

• Identification of four stages of inference that can be observed
in all analysed Question Answering tasks.

1Code available at https://github.com/bvanaken/visbert.
2The tool is available at https://visbert.demo.datexis.com, a short video demo can be
found at https://vimeo.com/383046202.
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Figure 1: The major control elements of the demo. The top tabs let the user choose between three different fine-tuned BERT
models on the QA tasks SQuAD, HotpotQA or bAbI QA. The user can then either choose an example out of the respective test
sets, or insert their own example consisting of a context, a question and optionally a ground truth answer. Using the button,
the tool presents the predicted answer (in purple) and the visualization of hidden states as shown in Figure 2.

• The presented tool allows users to (adversarially) test the
abilities and shortcomings of own Question Answering mod-
els on arbitrary samples.

2 VISUALIZATION OF TRANSFORMER
REPRESENTATIONS

The following section explains the underlying methods used to
generate layer-wise visualizations for QA samples in VisBERT.

TransformerModels. Transformers [13] generally consist of three
main modules: An embedding module in the beginning, a group of
stacked and homogeneous Transformer encoder blocks in the mid-
dle, and then either a classification head, or a set of decoder blocks,
which mirror the encoder blocks, on top. The embedding layer
includes a traditional embedding matrix for each token, but Trans-
formers uniquely add a positional embedding as well, in order to
introduce a recurrent inductive bias that is not supplied by the atten-
tion mechanism. This is in contrast to RNN based networks which
inherently contain this recurrent bias. The classification head for
our Question Answering models consists of a single Feed-Forward
layer with a Softmax. This head predicts two indices, namely the
start and the end index of the answer in the context. The main
representative power of the Transformer lies in its encoder blocks
[13]. Each encoder block includes a multi-headed self-attention
module, which transforms each token using the entire input con-
text, normalization, and a Feed-Forward network at the end, which
outputs the token representations used by the subsequent layer.

Explainability of Transformers. The architecture of BERT and
Transformer networks in general allows us to follow the trans-
formations of each token throughout the network. We use this
characteristic for visualizing the changes that are being made to the
tokens’ representations in each layer. In contrast to analysing the
single attention weights within BERT’s attention heads as proposed

by [14], this method allows us to observe the actual outcomes of
the whole encoder module in each layer.

Each layer of BERT outputs a different distribution of token
vectors and we do not have a reference for semantic meanings of
positions within these vector spaces. Therefore we consider dis-
tances between token vectors as indication for semantic relations.
Following this, we can observe the changing token relations that
the model forms throughout the inference process.

Processing the Hidden State Representations. For a given in-
put QA sample we collect the hidden states from each layer while
removing any padding. We then visualize the input on a token-
by-token basis. To that end we use the hidden states after each
Transformer encoder block, which contains a vector for each token
with a dimensionality of 768 (BERT-base) or 1024 (BERT-large).
Since these high-dimensional vectors are not directly interpretable
we apply dimensionality reduction, mapping the vectors into a
two-dimensional space. As discussed in [11], among the evalu-
ated dimensionality reduction techniques T-distributed Stochastic
Neighbor Embedding (t-SNE) [12], Principal Component Analysis
(PCA) [2] and Independent Component Analysis (ICA) [1], PCA
is most suitable for this scenario and reveals clusters that corre-
spond to those observed by k-Means clustering [5]. We therefore
use PCA for the VisBERT tool and fit it separately for each sam-
ple and layer, which allows us to process new samples on the fly.
The dimensionality reduction result is a 2D representation of each
token throughout the model’s layers. We further categorize the
tokens based on affiliation to question, supporting facts (facts that
are necessary to answer the question) or predicted answer in order
to facilitate interpretability.

3 DEMONSTRATION OUTLINE
The user interface of the browser-based VisBERT tool is shown in
Figure 1 and 2. We describe its application below.
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Figure 2: VisBERT’s visualization interface: At the top, a slider to choose which of the 12 (BERT-base) or 24 (BERT-large) layers
to visualize as well as an estimate, which of the four phases this layer belongs to. The legend below allows interactive filtering
of different parts of the input. Themain graph shows the contextual representations of the input tokens, each dot representing
one token, color-coded by their affiliation. This example shows the SQuAD model in layer 10: One cluster contains irrelevant
context tokens (left), one holds question tokens clustered together with supporting fact tokens (middle) and the predicted
answer token (right) was separated from the rest.

Included Question Answering Tasks. We equip the tool with
models for three well-known Question Answering tasks:

• SQuAD, the most popular recent QA dataset with 100,000 nat-
ural language questions. BERT-based models reach human
performance on SQuAD.

• bAbI QA, which is a collection of 20 different artificial toy
tasks. The tasks contain simple patterns and are fully solved
by recent models. However, they provide a useful testbed for
clearly observing inference paths.

• HotpotQA is the most difficult of the three tasks. Its 112,000
natural language questions come with long context texts and
were especially created to require multi-hop inference.

We intentionally choose three diverse tasks in order to observe
the influence of task design on BERT’s hidden representations. For
each task we provide a separate fine-tuned BERT model. We use a
BERT-base model (12 layers) for SQuAD and bAbI and BERT-large
(24 layers) for HotpotQA, because the base model does not produce
adequate results on this more difficult task. We also reduce the
context size of HotpotQA samples that exceed BERT’s 512 token
limit. In addition to the included datasets, the tool can be easily
extended to other Question Answering tasks.

Sample Selection. The tool includes a selection of samples from
the test sets of each dataset. As the bAbI task comprises 20 differ-
ent QA tasks, we choose exactly one sample per task and ignore
the tasks that cannot be solved by span prediction (e.g. Positional
Reasoning). In addition, the user is able to enter own examples.
The requirement for these examples are to enter a question and a
context document that contains the answer. The user can optionally
enter the correct answer and the tool will automatically extract the
sentence containing this answer as the supporting fact.

Layer-Wise Visualization. After selecting a sample, or entering
one of their own, the user will get the prediction from the selected
fine-tunedmodel. In addition to the predicted answer, a graph shows
the token representations for a given layer. The representations are
presented in 2D space after dimensionality reduction. Each point
in the vector space represents one token. The tokens are color-
coded into four categories: Question, supporting fact, context and
predicted answer. This way the user can specifically analyse how
the distances between certain tokens, e.g. question and supporting
facts tokens, change. The user can also hide a group of tokens to
only observe the remaining groups. By using the layer-slider on
top of the graph, the user is able to go through all layers of the
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model and observe the changes within the token representations.
This allows to inspect how the representations are influenced by
the context and the underlying task over the layers of BERT.

4 OBSERVATIONS
VisBERT provides the possibility to explore the internal state of a
model at each layer position. In the following we describe observa-
tions made from these internal states. These findings show how our
tool can help to gain a better understanding of the inner workings
of Transformer models.

Phases of BERT’s Inference. As shown in [11], BERT models
pass multiple phases while answering a question. VisBERT is able
to demonstrate these phases in all three selected QA tasks despite
their diversity. The tool indicates which phase is currently active,
so that users can compare them with their own observations. We
describe the phases briefly in the following:

(1) Topical Clustering In the first layers we see that tokens
are clustered based on topical similarities, comparable to a
static word embeddings like Word2Vec [7].

(2) ConnectingEntitieswithMentions andAttributesMid-
dle layers tend to cluster tokens based on their relation in
the specific context. For example, we see multi-token entities
clustered together because their tokens share one semantic
meaning. One can also observe clusters of entities with their
specific attributes.

(3) Matching Questions with Supporting Facts In the third
quarter of BERT layers, we can see that the question tokens
form clusters with the tokens of supporting facts. In multi-
hop questions we even observe clusters for each hop that the
question contains.

(4) Answer Extraction In the last layers the answer tokens are
separated from all other tokens. Earlier semantic clusters are
dissolved. Based on the certainty of the decision, there might
be other potential candidate tokens separated as well, with
the furthest answer tokens being chosen as final prediction.

Adversarial Examples. The system allows the input of new sam-
ples that do not belong to the preloaded test sets. On the one hand,
this allows users to find out which QA model (SQuAD, HotpotQA
or bAbI) fits a specific question type best and produces the right
result. On the other hand, the tool can be used to explore how the
models react to Adversarial Examples [17]. This way it is possible to
discover potential deficits and biases within the model. For example,
a user can add distracting facts to the context and check whether
the model is still able to follow the same inference path. Effective
methods for such adversarial examples on SQuAD are proposed by
[4]. Our tool allows to not only observe resulting changes in the
prediction, but also within the hidden states of a model.

Failure States. Decision legitimization is an important aspect of
neural network explainability. If a network predicts an answer, it
is useful to know why, in order to both improve the network and
to understand its limits. VisBERT’s visualizations show signs of
wrong predictions not only in the last layers, even early phases can
be helpful in analyzing errors. For example, in cases for which a
wrong prediction has the same type as the ground truth answer,

the problem is often that the wrong supporting fact was selected.
This is clearly visible in layers of phase 3, where the question is
matched with a wrong fact. For predictions that are completely
wrong (not even of the same type as the answer) the phases often
degenerate completely. This results in all layers looking either like
a mostly homogeneous cloud of tokens or like they are stuck in
phase 1, simply repeating the topical clustering with only slight re-
ordering. Lastly, the network’s general confidence can be estimated
by looking at the clusters in each layer. For samples in which BERT
is very confident, the clusters and phases are distinct. The lower
the confidence, the more blurry and indistinct the clusters become.

5 CONCLUSION
VisBERT establishes a novel method to analyze the behavior of
BERT models, in particular regarding the Question Answering task.
Our method allows a fine-grained analysis of each of the BERT
layers and depicts how each input token changes in each step. Ad-
ditionally, VisBERT reveals four phases in BERT’s transformations
that are common to all of the datasets we examined and that mirror
the traditional NLP pipeline, cf. [10]. We establish this behaviour
on three diverse Question Answering datasets and make all three
models available for users to make their own analyses on their own
data, as well as the code to reproduce this visualization.

FutureWork. Our tool can easily be extended to other BERT mod-
els, fine-tuned on different QA datasets or even other NLP tasks
entirely, and to other Transformer based models like GPT-2 [8].
Additionally it can be extended to include other dimensionality
reduction methods like t-SNE or UMAP [6].

Furthermore, we aim to explore the modularity demonstrated
by the four phases we discovered in BERT’s transformations. This
modularity could be pushed even further, by fine-tuning different
layers of BERT on different upstream tasks before training end-to-
end on the final downstream task.

The ability to observe how wrong predictions are formed could
be exploited for predicting a model’s certainty even in early layers.
Improvements on the model can be verified by observing changed
behavior throughout its layers.
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