
Change Impact Analysis in

Simulink Designs of Embedded

Systems

By

Bennett Mackenzie, B.Eng.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements for the Degree

Master of Applied Science

McMaster University

c© Copyright by Bennett Mackenzie, September 2019

Abstract

This thesis presents the Boundary Diagram Tool, a tool for change impact
analysis of large Simulink designs of embedded systems. The Boundary Dia-
gram Tool extends the Reach/Coreach Tool, an existing tool for model slicing
within a single Simulink model, to trace the impact of model changes through
multiple Simulink models and to network interfaces of an automotive controller.
While the change impact analysis results can be viewed directly within the
Simulink models, the tool also uses various block diagrams to represent the
impact analysis results with different levels of abstraction, motivated by in-
dustrial needs. In order to effectively present the complex impact analysis
results, various techniques for visual representation of large graphs are employed.
Furthermore, the Reach/Coreach Tool as an underlying model slicing engine
was significantly improved. The Boundary Diagram Tool is currently being
integrated into the software development process of a large automotive OEM
(Original Equipment Manufacturer). It provides support during several phases
of the change management process: change request analysis and evaluation, as
well as the implementation, verification and integration of software changes.
The tool also aids impact analyses required for compliance with functional
safety standards such as ISO 26262.

ii

Acknowledgments

Thank you very much to my supervisors Dr. Mark Lawford and Dr. Alan

Wassyng. They provided me with wonderful opportunities for undergraduate

and graduate research as well as guided me throughout both my studies and

the completion of this thesis.

Thank you very much to Vera Pantelic, whose guidance has been invaluable

not only throughout my research endeavours, but also throughout the process

of writing this thesis.

Thank you to my colleagues for making the years I spent doing research

very enjoyable ones.

Thanks to all of my family and friends for their support throughout my life

and academic career.

This wouldn’t have been possible without all of you.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vii

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 3
1.3 Contributions . 7
1.4 Thesis Structure . 8

List of Listings 1

2 Preliminaries 9
2.1 Matlab and Simulink . 9
2.2 Reach/Coreach Tool . 10

2.2.1 Support for Different Simulink Blocks 12
2.3 The Auto Layout Tool . 21
2.4 Related Work . 22

3 The Boundary Diagram Tool 25
3.1 General Overview . 25

3.1.1 Operational Environment 26
3.1.2 Dependencies . 26
3.1.3 Requirements . 27

iv

3.1.4 Limitations . 28
3.1.5 Software Architecture . 29

3.2 Tracing Between Models and to/from Network Interfaces 32
3.3 Correctness of the BDT Analysis 36
3.4 Performance Considerations for Industrial Applications 38

3.4.1 Performance Improvements for Reach/Coreach on Large
Models . 38

3.4.2 Cache Building . 41
3.5 Filters for Impact Analysis . 44
3.6 Measuring Impact . 45
3.7 Summary . 46

4 Boundary Diagram Generation 47
4.1 Boundary Diagram Generation: Implementation 48
4.2 Legibility Concerns . 49
4.3 Interactive Exploration . 50
4.4 Specific Diagram Views . 53

4.4.1 Immediate Impact . 53
4.4.2 Model A to Model B . 54
4.4.3 Impact on Functional Safety 55

5 Boundary Diagram Tool in Software Change Management 57
5.1 Software Change Management 57

5.1.1 The Software Change Procedure 57
5.2 Maintaining Cache . 59
5.3 Applications in the Software Change Procedure 61

5.3.1 BDT in Software Change Request Analysis and Evaluation 61
5.3.2 BDT in Change Implementation 63
5.3.3 Impact Analysis in Regression Testing 64
5.3.4 Impact Analysis in Integration 66

6 Conclusions and Future Work 67
6.1 Future Work . 69
6.2 Closing Remarks . 71

v

Appendices 72

A User Guide 73
A.1 User Interface . 73

A.1.1 BDT GUI . 75
A.1.2 Diagram Generation GUI 77
A.1.3 Configuration GUI . 78

vi

List of Figures

2.1 A very simple Simulink model 10
2.2 A simple example of using a Subsystem block 13
2.3 An example demonstrating a reach from In1 through the simple

Subsystem . 13
2.4 An example demonstrating how the Reach/Coreach Tool handles

Goto/Froms . 15
2.5 An example demonstrating how the Reach/Coreach Tool handles

data stores . 16
2.6 An example of a conditionally executed Subsystem in Simulink . 17
2.7 An example of a reach through a conditionally executed subsys-

tem in Simulink. 17
2.8 An example of While Iterator Subsystem 18
2.9 An example of an If block used in Simulink. 19
2.10 Reachability analysis from In2 20
2.11 A reachability analysis through a bus 21

3.1 The USES hierarchy of the BDT’s structure 31
3.2 A flowchart of the BDT reachability analysis 33
3.3 A flowchart of the BDT coreachability analysis 35

4.1 Illustration of issues with the boundary diagram generation in
Microsoft Visio . 48

4.2 An example of a full feedback boundary diagram 49
4.3 An example of an interactively explored boundary diagram for

the impact of Model45 to Model9. 52
4.4 Gotos are used for feedback . 53

vii

4.6 An example of a boundary diagram view showing the change
impact on safety . 55

5.1 Change Request Procedure . 59

A.1 BDT in the Simulink context menu. 74
A.2 The Boundary Analysis GUI for the BDT. 76
A.3 The Diagram Generation GUI for the BDT. 78
A.4 The Configuration GUI for the BDT. 79

viii

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Chapter 1

Introduction

This chapter introduces the motivation and objective of the work presented

in this thesis, in Section 1.1. The approach taken to accomplish the objective

follows in Section 1.2. The main contributions of the thesis are discussed in

Section 1.3. Finally, the overall structure of this thesis is defined in Section 1.4.

1.1 Motivation

Complexity of embedded software in industry is rapidly increasing. In the

automotive industry, software implemented in modern cars consists of over

100M lines of code (Charette 2009). Given that software maintenance is the

most resource-consuming phase of the software development life cycle (Bennett

1990), maintaining such large code bases of modern automotive controllers

requires significant resources.

Change impact analysis can be defined as “identifying the potential conse-

quences of a change, or estimating what needs to be modified to accomplish a

change” (Bohner 1996). Change impact analysis can be used in analysis, evalu-

1

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

ation, implementation, and verification of changes in software (Bohner 1996).

For example, in the analysis and evaluation of a proposed software change,

impact analysis could be used to identify other components of the software

that are likely undergo changes to support a given proposed software change.

This information can be used to plan the release schedule according to the

estimated time needed to implement a proposed change. In the implementation

phase, the results of an impact analysis on the changed source code can be

used to identify other software components that need to be changed in order

to accommodate the implemented change. When verifying an implemented

change, an impact analysis could be used to focus regression testing efforts on

changed parts of software. Further, safety-critical systems standards such as

ISO 26262 (ISO 2011b) and IEC 61508 (IEC 2010) mandate that an impact

analysis is performed for any requested change in the software maintenance

process of safety-critical systems. Inadequate change impact analysis of software

systems was found to be a cause of accidents (de la Vara et al. 2016).

Manually performed impact analyses tend to be unreliable. Case studies

show that developers tend to heavily underestimate the impact of software

changes (Lindvall 1997). Therefore, it is very important to have proper tool

support for change impact analyses in modern embedded systems.

In recent years, the automotive industry has trended towards utilizing the

Model-Driven Development paradigm for developing embedded software, with

Matlab/Simulink being commonly employed throughout the industry as the

main platform supporting such development. Rather than directly writing

C code, automotive controls developers now create Simulink models that are

used to generate C code. As the level of abstraction has risen from source

code to Simulink models, the software maintenance efforts has shifted from

2

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

source code maintenance to Simulink models maintenance. While tools for

performing change impact analysis on code written in traditional programming

languages exist (Galbo 2017), the current lack of corresponding tool-supported

approaches to impact analysis on Simulink models presents an opportunity for

the development of a new tool that would fill the gap.

Therefore in order to properly maintain Simulink designs of complex,

production-scale embedded systems, proper tool support is required for per-

forming change impact analysis on Simulink models. Proper tool support

will (i) reduce the required resources and, consequently costs of maintenance,

and (ii) decrease the incidence of software-related accidents in the automotive

industry. In particular, the need for the tool developed in this thesis arose from

our collaboration with a large automotive Original Equipment Manufacturer

(OEM): a tool was needed for impact analysis within the Simulink design of

the OEM’s electrified powertrain supervisory controller. The application layer

of the controller consists of dozens of Simulink models, with the largest models

containing hundreds of thousands of blocks and a few tens of thousands of

subsystems.

1.2 Approach

The tool described in this thesis, the Boundary Diagram Tool (BDT), lever-

ages the previously built Reach/Coreach Tool (Pantelic et al. 2018). The

Reach/Coreach Tool is a tool for model slicing Simulink models, a process

that involves extracting a functional subset of the blocks in a Simulink model

based on an impact analysis of an initial selection. The tool traces through

control and data dependencies within a single Simulink model while preserving

3

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

its hierarchical structure. More precisely, by tracing through the data and

control dependencies from a selected set of blocks and/or signal lines in a

Simulink model, the Reach/Coreach Tool identifies the affected blocks and

lines of the model. This functionality is called either Reach analysis or forward

tracing. Similarly, the Reach/Coreach Tool can identify the blocks and lines

of the model which affect the specified blocks and lines. This functionality is

referred to as either Coreach analysis or backward tracing. The Reach/Coreach

Tool can be used in the design and static analysis of Simulink models (e.g.,

finding unreachable parts of a model), as well as in impact analysis within a

single Simulink model. Other engines have been created for slicing of Simulink

models (Reicherdt and Glesner 2012; MathWorks 2018a; Rapos and Cordy 2017;

Kowalewski 2016), but the Reach/Coreach Tool was chosen due to its maturity,

familiarity and availability (the tool is open source and non-commercial). A

detailed comparison of related tools is provide later in Section 2.4.

The Boundary Diagram Tool builds upon the engine provided by the

Reach/Coreach Tool, and extends it to an industrial strength change impact

analysis tool that can track impact across numerous large scale models as

well as to/from network interfaces of the application portion of the OEM’s

supervisory controller system for the powertrain of a hybrid electric vehicle.

The tool has the ability to track both intra- and inter-model dependencies

within the Simulink design of the controller. To the best of the author’s

knowledge, this is the first tool for impact analysis within Simulink designs of

embedded systems. MathWorks’ Impact Analysis tool (MathWorks 2018b) is

very different than the BDT as it tracks only build dependencies between files

in Matlab/Simulink implementations. It does not track connections between

Simulink models that are specified outside of the modelling environment (e.g.,

4

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

via dependency matrices), as is often the case in industry. Also, it does not

perform the fine-granularity intra-model analysis provided by the BDT via the

Reach/Coreach Tool (Pantelic et al. 2018).

The BDT was specifically built to perform change impact analysis for the

OEM’s electrified powertrain supervisory controller. The connections between

the models within the controller are specified using a dependency matrix.

The BDT was developed with the information hiding principle in mind to

encapsulate the encoding of the interconnections, so that the tool can then be

easily adapted to other embedded systems implemented in Simulink that use

a different approach/format to specify the inter-model connections. Recently

there has been a push to standardize interfaces of software components and their

interconnections within electronic control units and even between processors

over network connections via the emerging automotive industry middleware

standard called AUTOSAR (Fürst et al. 2009). The BDT has been designed

so that it can be easily adapted to support the specification of inter-model

connections between the software components that are described in AUTOSAR

or any other standardized format.

The BDT is built to help our industry partner adhere to ISO 26262, the

functional safety standard for road vehicles developed by the International

Standard Organization (ISO 2011b). The standard covers product development

at the system, hardware, and software level, as well as required supporting

processes. ISO 26262 section 8 requires an impact analysis to be performed for

change requests to the system’s software in order to comply with the standard.

The BDT presents change impact analysis results using various diagrams.

Aside from marking the impacted blocks and lines within Simulink models,

the tool presents change impact using non-Simulink block diagrams. The

5

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

depiction of change impact analysis results using block diagrams of various

abstraction levels was inspired by boundary diagrams. Boundary diagrams are

often used in systems and safety engineering to present the components of a

system, relationships between the components, as well as system’s interface to

external entities (Lindland 2007). They are typically used as a design tool that

supports a hazard analysis technique called FMEA (Failure Mode and Effect

Analysis). The generation of this kind of diagram is standard in mechanical and

electrical designs of systems for our industry partner. As such one of the initial

motivations of this tool was to be able to provide a similar view for software

systems, however the classical boundary diagram didn’t tell the entire story for

software systems. Boundary diagrams focus on representing the interactions of

systems and/or their components. While the diagrams generated by the tool

include boundary diagrams, the tool also produces several other diagrams, most

notably context diagrams, as well as slices of context and boundary diagrams

showing only impacted components and dependencies identified by impact

analysis. By a slight abuse of terminology, this thesis will henceforth refer to

diagrams generated by the tool as boundary diagrams.

Due to the large number of Simulink models in the controller’s implemen-

tation as well as high degree of coupling between them, the BDT-generated

diagrams were found to be too complex to effectively represent the results

of impact analysis. Therefore, techniques for visualization of large graphs

have been employed, in particular, interactive exploration and unwinding of

feedback loops to allow developers to understand and navigate impact analysis

results (Herman, Melançon, and Marshall 2000) have been effective.

6

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

1.3 Contributions

The main contributions of this thesis are as follows:

1. To the best of the author’s knowledge, this is the first tool for compre-

hensive change impact analysis within Simulink designs of embedded

systems. The BDT allows a developer to perform change impact analysis

on a production-scale embedded controller. The tool aids in analysis

and evaluation, implementation, verification and integration of software

change requests, and helps with compliance with modern software safety

standards such as ISO 26262 (ISO 2011b).

2. The underlying intra-model slicing engine, the Reach/Coreach Tool, has

itself undergone major modifications resulting in significant performance

improvements, when applied to a large model. Such performance im-

provements were necessary in order to leverage the intra-model slicing

tool to build a practical inter-model slicing tool for embedded controllers

with a large number of models and complex interactions between them.

3. The tool presents change impact analysis results using various diagrams

offering different abstractions of the results, motivated by the tool’s ap-

plication in an OEM’s change management process. In order to depict

dependencies within the complex system of the industrial controller, tech-

niques such as interactive exploration and loop unwinding for visualizing

large graphs are employed. While the techniques are not new, their

application to diagrams generated by the BDT to navigate and document

complex impact analysis results is novel.

4. The BDT’s applications in the model-based change management process

7

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

were identified, including change request analysis in compliance with

functional safety standards, as well as design, implementation, verification

and integration of software changes.

1.4 Thesis Structure

This thesis will be broken down into five sections. First, preliminary background

information relevant to the thesis will be discussed. Second, a section that

will detail the tool and how the tool performs the impact analysis. Third,

the boundary diagrams generated by the tool and the views they represent

will be explained. Fourth, a section about how the tool fits into the change

management process. And finally, the last section will contain conclusions and

future work.

8

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Chapter 2

Preliminaries

The material in this chapter describes the background for the research presented

in this thesis. First, Section 2.1 introduces the Matlab/Simulink environment.

Then, Section 2.2 describes the Reach/Coreach Tool used as a model slicing

engine for the BDT. Finally, several existing impact analysis tools for Simulink

are discussed and compared to the BDT in Section 2.4.

2.1 Matlab and Simulink

Matlab is a programming and numerical computing platform developed by

MathWorks that is designed for use by scientists and engineers. The Matlab

language programming language is a weakly typed programming language

built with an emphasis on fast and precise matrix computations for scientific

applications. In addition to its features involving matrix computations, Matlab

has a suite of features for various scientific and engineering applications. This

includes control systems, machine learning, parallel computation, math and

statistics, image processing, and more. The MathWorks has additionally

9

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

1
In1

2
In2

1
Out1

Figure 2.1: A very simple Simulink model

released a model-based design platform built upon Matlab called Simulink.

Simulink is an environment used to create, simulate, and analyze models

of dynamic systems. These models are built through a GUI (Graphical User

Interface) using the Simulink graphical programming language. The models are

composed of two types of objects: blocks and signal lines. A block in Simulink

performs an operation, and signals represent data flow between blocks. Blocks

and signal lines are connected via the ports attached to Simulink blocks, which

indicate where signal lines are to be inputted to the block and where signal

lines are to be outputted from the block.

The example shown in Figure 2.1 represents a simple Simulink block diagram.

The blocks labelled In1 and In2 on the left provide inputs to the model, and

are called Inport blocks. The block in the middle is called a Sum block, that

adds two signals. Finally, the block labelled Out1 on the right is a called an

Outport block.

2.2 Reach/Coreach Tool

The Reach/Coreach Tool is a model-slicing tool (Pantelic et al. 2018) developed

by McSCert for performing an impact analysis and slicing a Simulink model.

After an initial prototype implementation of the tool, I took over the majority of

10

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

maintenance and improvements to the Reach/Coreach tool. Given my intimate

knowledge of the tool and how it functions, using the Reach/Coreach tool as

the engine for performing impact analysis for the BDT was a simple decision.

For a set of specified blocks and lines in a Simulink model, the Reach/Coreach

Tool can perform two types of analyses. The Reach analysis (forward tracing)

identifies all blocks and lines within the model that are affected by the selected

blocks and lines. The Coreach analysis (backward tracing) finds all blocks and

lines within a model that affect the selected blocks and lines. These analyses

are performed by tracking control flow and data flow within a model—therefore,

the tool tracks both control and data dependencies.

Data dependencies in a model reflect the potential transfer of data between

different objects (such as blocks). Several examples of data dependencies exist

in Figure 2.1. For example, the Sum block has a data dependencies on both

of the Inport blocks. These are explicit data dependencies, where in each

case the dependency is denoted by an object in the model (a signal line).

There exist implicit data dependencies between blocks of specific block types

in Simulink models: examples of implicit data dependencies in a model are

connections between Goto and From blocks as well as connections between

Data Store Memory, Data Store Write blocks and Data Store Read blocks. These

dependencies will be discussed further in Section 2.2.1.

When performing either a Reach or Coreach analysis, the tool takes a

conservative approach when determining the impact of a block or signal in

the model. The tool assumes that a signal inputted to a block affects all

outgoing signals from a block. Then, for a large number of discrete Simulink

blocks typically found in controllers (for example, Subsystem, If, buses), the tool

precisely tracks the impact through a block based on its function. In particular,

11

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

the tool traces a signal from signal lines to a port of a block, and checks if

the block type is in a list of block types that the tool supports with analysis

based on specific block functionality to determine the affected or affecting

signals associated with that block. These specific block types are described in

Section 2.2.1. Therefore, dependencies calculated by the Reach/Coreach Tool

represent an over-approximation of the actual dependencies, with fine-grained

tracing through a number of common blocks to increase the precision of the

analysis and avoid missing dependencies.

It should be noted that the Reach/Coreach tool performs a static analysis

on the model, so any modelling errors that would stop compilation are not

caught by the tool.

2.2.1 Support for Different Simulink Blocks

As mentioned previously, the Reach/Coreach Tool checks a list of blocks with

specific behaviours in order to better track which input signals to a block affect

which output signals of that block. The cases for special behaviour handling

are listed as follows:

Subsystem Blocks

Simulink Subsystems allow developers to group related blocks and hierarchically

organize the model. An example of a Subsystem in Simulink can be seen in

Figure 2.2.

When a subsystem input port is encountered during a reachability analysis,

the Reach/Coreach Tool will continue the reachability analysis inside the

subsystem from the corresponding Inport block in the subsystem. Then, when

12

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

1
In1

2
In2

1
Out1

In1

In2

Out1

Subsystem

(a) A simple Subsystem viewed from its
parent system

1
Out1

1
In1

2
In2

Logical
Operator

(b) Inside of a simple Subsystem

Figure 2.2: A simple example of using a Subsystem block

the analysis traces to an Outport block within a subsystem, it continues from

the port of the subsystem the Outport corresponds to. An example of this is

shown in Figure 2.3. In this manner, performing a reachability analysis (as well

as a coreachability analysis) through subsystem blocks preserves the subsystem

hierarchy.

1
In1

2
In2

1
Out1

In1

In2

Out1

Subsystem

(a) Reach through the simple Subsystem
viewed from the parent system.

1
Out1

1
In1

2
In2

Logical
Operator

(b) Reach through the simple Subsystem
viewed from inside the Subsystem.

Figure 2.3: An example demonstrating a reach from In1 through the simple
Subsystem

Data Flow Blocks

Simulink offers two constructs to route data without the use of signal lines: the

Goto/From construct and data stores.

The Goto block passes its input to its corresponding From blocks. There

are three types of Goto blocks: global Gotos, local Gotos, and scoped Gotos. A

local Goto and its corresponding Froms have to be located within the same

subsystem—a local Goto is not visible outside its parent subsystem. Global Goto

13

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

and its corresponding From blocks can be placed anywhere in a model as long as

they do not cross non-virtual subsystem1 boundaries. The visibility of a scoped

Goto block is defined by the location of the corresponding Goto Tag Visibility

block, which is of the same name as the Goto block and its corresponding Froms.

The From and Goto blocks may be used within the subsystem where the Goto

Tag Visibility block is placed and any subsystem lower in the model hierarchy.

In a Simulink diagram, a local Goto is denoted by square brackets around

its tag. In Figure 2.4, every Goto block in the model is local. In the case of

a scoped Goto or From, the tag would be surrounded by braces, for example

"{A}". For a global Goto or From, the tag is not surrounded by braces or

brackets.

For each of these Goto/From blocks, the tracing principle is the same. When

performing a reachability analysis, if the tool encounters a Goto block, it will find

the corresponding From block(s). When performing a coreachability analysis,

if the tool encounters a From block, the tool will find the corresponding Goto

block. Note that while one can find multiple From blocks corresponding to a

single Goto, there can only be one Goto block corresponding to a From block. If

a scoped Goto or From block is encountered in a reachability or coreachability

analysis, the corresponding Goto Tag Visibility block is also considered to be

reached or coreached. An example of tracing via Goto/From blocks is shown in

Figure 2.4.

Data stores are analogous to variables in textual programming languages

such as C. To utilize data stores, three blocks are needed. The first is the

Data Store Memory block—analogous to a variable declaration. The second
1Non-virtual subsystem is a subsystem whose contents are evaluated as a single unit

(atomic execution).

14

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

1
In1

1
Out1

[A]

Goto

[A]

From

[B]

Goto1

[C]

Goto2

2
In2

3
In3

[C]

From1

[B]

From2

In1

Out1

Out2

Out3

Subsystem

2
Out2

3
Out3

(a) A simple Goto/From pair in a Simulink
model

1
In1

1
Out1

[A]

Goto

[A]

From

[B]

Goto1

[C]

Goto2

2
In2

3
In3

[C]

From1

[B]

From2

In1

Out1

Out2

Out3

Subsystem

2
Out2

3
Out3

(b) Reach from In2 (through a Goto/From
pair) in a Simulink model

Figure 2.4: An example demonstrating how the Reach/Coreach Tool handles
Goto/Froms

is the Data Store Write block, which writes data into the data store. The

third is the Data Store Read block, which retrieves data from the data store.

When performing a reachability analysis, if the tool encounters a Data Store

Write block the tool will find the corresponding Data Store Read blocks that

retrieve data from its corresponding data store as well as the associated Data

Store Memory block. Note that there can be many Data Store Read blocks and

Data Store Write blocks corresponding to the same data store denoted by a

Data Store Memory block. When performing a coreachability analysis, if the

tool encounters a Data Store Read block, the tool will find the corresponding

Data Store Write blocks writing to its corresponding data store as well as the

associated Data Store Memory block. When performing either the reachability

or coreachability analysis, if the tool encounters a Data Store Memory block,

the tool will find all corresponding Data Store Read blocks as well as Data Store

Write blocks. An example of tracing through data store blocks is shown in

Figure 2.5.

15

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

A

Data	Store
Write

A

Data	Store
Read

A

Data	Store
Memory

1
In1

Product

1
Out1

2
In2

(a) A Simulink model with a data store

A

Data	Store
Write

A

Data	Store
Read

A

Data	Store
Memory

1
In1

Product

1
Out1

2
In2

(b) Reach from In1

Figure 2.5: An example demonstrating how the Reach/Coreach Tool handles
data stores

Subsystem Control Execution Blocks

Simulink also has control dependencies. In Simulink, these are derived from

subsystems whose contents are conditionally executed when a certain condition

is met. For example, a Triggered Subsystem block only executes when a certain

event is received at its control input, the TriggerPort block (see Section 2.2.1

for more details). As an illustration, the execution of a Triggered Subsystem

as shown in Figure 2.6 is controlled by the signal at the subsystem’s Trigger

Port. Other examples of blocks that implement control flow include: For Iterator

Subsystems, For Each Subsystems, While Iterator Subsystems, If Action Subsystems

and the corresponding If blocks, and Enabled Subsystems.

If a control input of a conditional subsystem is encountered when performing

a reachability analysis, all blocks and signals within the subsystem are traced.

This is because the execution of all blocks and signals in the subsystem is

dependent on the control input. This is shown in Figure 2.7.

Control flow logic in Simulink can also be implemented using While Iterator

Subsystems and For Iterator Subsystems (for loops). These subsystems also have

16

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

In1

In2

Out1

Triggered
Subsystem

2
In2 1

Out1

1
In1

3
In3

(a) A Triggered Subsystem in Simulink

1
Out1

Trigger

1
In1

2
In2

Product

(b) The inside of a Triggered Subsystem in
Simulink, with Trigger Port at the top

Figure 2.6: An example of a conditionally executed Subsystem in Simulink

In1

In2

Out1

Triggered
Subsystem

2
In2 1

Out1

1
In1

3
In3

(a) A view of a reach through a Triggered
Subsystem from its parent.

1
Out1

Trigger

1
In1

2
In2

Product

(b) A view of a reach through the inside of
a Triggered Subsystem.

Figure 2.7: An example of a reach through a conditionally executed subsystem
in Simulink.

control blocks analogous to Trigger Port: the While Iterator block and the For

Iterator block. The iterator blocks have a condition signal (labelled as In3)

and an initial condition signal (labelled as IC). These iterator blocks control

execution of the subsystem as follows: when the initial condition is true, the

subsystem executes until the condition signal is false. If the initial condition is

false the subsystem doesn’t execute. An example of this type of subsystem is

shown in Figure 2.8. If the control signal condition is met, execution of the

subsystem will occur. Thus, when performing a reachability analysis and one of

17

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

these iterator blocks is encountered, all blocks and signals within the subsystem

are traced.

In1

In2

In3

IC

Out1while	{	...	}

While	Iterator
Subsystem

1
In1

2
In2

3
In3

1
Out1

4
In4

(a) A While Iterator Subsystem

1
Out1

while	{
		...
		}

cond

IC

While	Iterator

4
IC

1
In1

2
In2

Relational
Operator

3
In3

(b) Inside the While Iterator Subsystem

Figure 2.8: An example of While Iterator Subsystem

When performing a coreachability analysis, it is more difficult to identify

any blocks that control the execution of the contents of a subsystem. This is

because the control block itself does not have any outgoing connections to any

blocks in the model to trace backwards through, as shown in both Figure 2.6

and Figure 2.8. To find any blocks that control execution of blocks within a

subsystem, the tool must therefore check if any blocks traced belong to any

subsystem whose execution is dependent on control blocks (such as an iterator

block or a trigger block.)

If Blocks

The outputs of an If block are used to trigger If Action Subsystems, depending

on the evaluation of a specified condition on inputs of the If block. If Action

Subsystems have an Action Port block: the subsystem only executes when the

input is true.

An example of an If block is shown in Figure 2.9. The If block evaluates

18

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

u1

u2

if(u1	>	0)

elseif(u2	>	u1)

else

If

1
In1

2
In2

1
Out1

Out1
if	{	}

If	Action
Subsystem

Out1
elseif	{	}

If	Action
Subsystem1

Out1
else	{	}

If	Action
Subsystem2

2
Out2

3
Out3

Figure 2.9: An example of an If block used in Simulink.

the expressions top-down. If a logical expression is evaluated to true, the

corresponding output is set to true and the connected If Action Subsystem is

triggered, and no other conditional expressions are evaluated. If the expression

evaluates to false, the next conditional expression is evaluated.

For a condition at an output port of an If block, the BDT currently finds

its dependencies on the If block’s inputs based on the existence of the block’s

input names within the condition and within the If block’s conditions at the

ports above (since the conditions are evaluated top-down): if there exists a

dependency between the input and the output, then the name of an input would

be found in the condition for an output or in any of the If block’s conditions

above; otherwise, there is no dependency. An example is shown in Figure 2.10.

Note, however, that this is still an overapproximation of actual dependencies.

For instance, if the condition at the second output of the If block in Fig. 2.10

is u2 ∧ ¬u2, the output signal is obviously not affected by the value of u2

although our tool would still highlight the dependency of the output on u2.

This is due to the current implementation being a naive approach to evaluating

19

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

u1

u2

if(u1	>	0)

elseif(u2	>	u1)

else

If

1
In1

2
In2

1
Out1

Out1
if	{	}

If	Action
Subsystem

Out1
elseif	{	}

If	Action
Subsystem1

Out1
else	{	}

If	Action
Subsystem2

2
Out2

3
Out3

Figure 2.10: Reachability analysis from In2

logical expressions in order to reduce complexity of the tool. In future work,

this aspect of the Reach/Coreach Tool could be refined.

Buses

A bus is a virtual construct in Simulink used to group signals together into a

single bus signal. This signal is created at a Bus Creator block, which takes as

input signals to group, and outputs the bus signal itself. This bus signal can

be routed through inports/outports of subsystems, and through Goto/From

pairs. The bus signal is then split into its constituent signals at a Bus Selector

block. When performing a reachability analysis, the tool can trace an input

signal to the Bus Creator through the bus signal and to the corresponding signal

outputted from the Bus Selector. Similarly, when performing a coreachability

analysis, the signal can trace an output signal from the Bus Selector through

the bus signal and to the corresponding signal inputted to the Bus Creator.

An example of a reachability analysis through a bus is shown in Figure 2.11.

Figure 2.11 demonstrates that signal order into and out of the data bus is not

20

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

necessarily preserved, and the Reach/Coreach Tool traces the correct signal

regardless.

1
In1

2
In2

3
In3

1
Out1

2
Out2

3
Out3

<signal3>

<signal2>

<signal1>

(a) An example of a bus

1
In1

2
In2

3
In3

1
Out1

2
Out2

3
Out3

<signal3>

<signal2>

<signal1>

(b) A reachability analysis tracing the first
signal into a bus

Figure 2.11: A reachability analysis through a bus

Limitations

There are several limitations to the Reach/Coreach Tool in the context of

this thesis. First, the analyses performed with the Reach/Coreach Tool are

limited to a single Simulink model. This is a limitation that the BDT aims to

address. Second, the analyses performed by the Reach/Coreach Tool do not

take execution order in the model into account. Finally, there are several blocks

with special behaviours that are not yet accounted for in the Reach/Coreach

Tool. For these blocks, the conservative approach is taken (all inputs affect all

outputs), but more precise tracing is possible. Most notably, the Reach/Coreach

Tool currently does not provide fine tracing through Stateflow blocks.

2.3 The Auto Layout Tool

The Auto Layout Tool is a tool that provides a layout for a Simulink block

diagram (McSCert 2018a). To do so, it represents the blocks and lines in the

diagram as a directed graph, and interfaces with external graph visualization

software in order to provide orderly positioning for the blocks. This is used as

21

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

an engine for generating the boundary diagrams.

2.4 Related Work

There are several tools available for model slicing within a single Simulink

model. The only commercially available tool is the Model Slicer provided with

MathWorks’ Simulink Design Verifier (Reicherdt and Glesner 2012; MathWorks

2018a). The Model Slicer can trace the signal path through a model from a

selected block. The tool can be used to find the signal paths affecting a block,

or signal paths affected by a block. The tool is very similar in features to

the Reach/Coreach Tool in terms of functionality, although there are some

key differences. Most notably, any analysis beginning at virtual blocks is not

supported, where virtual blocks are any blocks which do not affect the execution

of the model. Typically, virtual blocks are used to facilitate the structuring

of the model. Examples of blocks always considered to be virtual include

Gotos, Froms, and Terminator blocks. Inport, Outport, and Subsystem blocks

are usually considered virtual as well, except in some specific circumstances.

Therefore, the Model Slicer cannnot trace impact from blocks such as Inports

and Outports (Pantelic et al. 2018).

Furthermore, the Model Slicer does not trace control flow as precisely as the

Reach/Coreach Tool. For example, the Reach/Coreach Tool can trace through

the If block more accurately. The Model Slicer assumes that all inports affect

all outports of an If block, a much rougher approximation than the tracing

performed by the Reach/Coreach Tool (as shown in Section 2.2.1). Finally, the

Model Slicer tool is commercial, sold as part of MathWorks’ Simulink Design

Verifier (SDV), and, as such, incurs a hefty cost. Since the Reach/Coreach Tool

22

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

is available via Matlab Central and was developed by the author of this thesis,

the Reach/Coreach Tool was a logical choice as the impact analysis engine of

the BDT.

Also, there exist some academic tools for performing similar analysis of

Simulink models. The slicing tool developed by Glesner et al. (Reicherdt

and Glesner 2012) takes into account both data dependencies and control

dependencies. The approach uses signal lines to trace data dependencies and

derives control dependencies from Controlled Execution Contexts, which are

essentially schedules for sections of Simulink models that are conditionally

dependent on certain Simulink blocks. An example of a Controlled Execution

Context is a Triggered Subsystem. This is very similar to the approach used in

the Reach/Coreach Tool. However, the Reach/Coreach Tool can trace data

dependencies through data routing blocks such as Goto/From pairs in addition

to data stores, whereas the tool in (Reicherdt and Glesner 2012) does not.

Additionally, that tool is not available.

Another Simulink model slicing tool, artshop, is a model management repos-

itory used for performing architectural analysis of Simulink models (Kowalewski

2016). This is a multipurpose framework used to store models, as well as

requirements and test cases mapped to the models. This framework comes with

several built-in tools used for model analysis, including model-slicing tools and

static analysis tools. However, these tools seem to be limited to performing

analysis on individual models imported into the artshop repository, and the

BDT is proposed to perform an impact analysis across a whole system of

Simulink models. Additionally, the Reach/Coreach engine used in the BDT

provides a far more precise trace than the approach used by the model slicer

in artshop—the approach used in the artshop model slicer considers only the

23

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

data flow in a model (Kowalewski 2016), whereas the Reach/Coreach Tool

additionally traces through control flow. Also, it is important to note that the

artshop tool is not available, commercially or otherwise.

Another academic tool called SimPact performs change impact analysis

within a Simulink model with respect to a previous version of that model to

identify the parts of the model affected by a change, as well as to potentially

inform testing based on the results of that impact analysis (Rapos and Cordy

2017). While similar to the goal of the BDT, the SimPact tool is limited

to impact analysis within a single Simulink model. Since SimPact was not

available for download and the Reach/Coreach Tool was more familiar, it was

decided that the Reach/Coreach Tool would be better suited to be used as an

engine for the BDT.

Finally, MathWorks’ Impact Analysis tool can be used to track build de-

pendencies between files within a Simulink project (MathWorks 2018b). The

tool does not track any links between Simulink models that exist outside of the

Matlab environment, such as inter-model connections listed in a dependency

matrix. In industrial controllers, the use of this kind of dependency matrix is

common practice. Additionally, the MathWorks Impact Analysis tool does not

perform any tracing within a Simulink model, such as that performed by the

Reach/Coreach Tool.

24

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Chapter 3

The Boundary Diagram Tool

This chapter discusses the BDT and its approach to performing an impact

analysis for the application layer of the supervisory controller for our industrial

partner’s hybrid powertrain system. First, Section 3.1 discusses a general

overview of the tool. Then, the approach for performing an impact analysis

between models and to network interfaces is discussed in Section 3.2. Perfor-

mance considerations for the BDT to function in a robust and timely manner

are discussed in Section 3.4. Filters for the impact analysis used by the BDT

are detailed in Section 3.5. Finally, a quantitative metric used to describe the

results of an impact analysis is presented in Section 3.6.

3.1 General Overview

This section presents a general overview of the tool, discussing the necessary

operational environment and dependencies as well as requirements and the

software architecture of the tool.

25

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

3.1.1 Operational Environment

The BDT is a set of Matlab/Simulink scripts and functions. The tool is built

for Matlab/Simulink 2016b and later versions. Matlab/Simulink and the BDT

are available on Windows, OS X, and Linux.

3.1.2 Dependencies

The tool is dependent on the following tools/files being present on the Matlab

path:

1. The Reach/Coreach Tool—A tool for impact analysis within a model.

The tool was discussed in Section 2.2.

2. Model Dependency Metadata File—A file containing dependencies be-

tween models, as discussed in Section 3.2.

3. CAN Dependency Mapping File—A file containing a mapping of signals

in a model that communicate with the CAN network as discussed in

Section 3.2.

4. The Auto Layout Tool—The BDT uses the Auto Layout Tool to generate

boundary diagrams with a well formatted layout.

The two Matlab tools on which the BDT is dependent are available for

Matlab versions 2016b and onwards. They are open-source and available via

Matlab Central (McSCert 2018a; McSCert 2018b). The two dependency files

used by the tool are Excel spreadsheets with the format specified by the industry

partner.

26

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

3.1.3 Requirements

The requirements for the BDT were elicited via discussions with our industry

partner. The industry partner pitched an initial set of requirements which we

refined, elaborated upon, and appended. These requirements are as follows:

1. The tool must be able to track the control flow and data flow from a

selection of any combination of blocks and lines in a Simulink model to

identify all blocks and lines in a Simulink model affected by the selection.

2. The tool must be able to track the control flow and data flow from a

selection of blocks and lines in a Simulink model to identify all blocks

and lines in a Simulink model that affect the selection.

3. The tool must be able to identify all blocks in a Simulink model that

connect to blocks in other Simulink models in a system via a dependency

matrix in order to track control flow between models.

4. The tool must be able to identify what blocks of a given model send data

to or receive data from the CAN network interface, and identify the CAN

signal name or CAN message name.

5. The tool must calculate the impact metric im = w1 ·n1 +w2 ·n2 +w3 ·n3

where n1 is the number of impacted level 2 safety models, n2 is the total

number of impacted models, and n3 is the number of impacted CAN

signals. Values w1, w2, w3 ∈ R+ are weights that can be defined by the

project manager.

6. When performing a change impact analysis, there will be no false negatives.

All blocks and lines in the system that are impacted by the change must

27

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

be identified by the tool.

7. The tool must be able to generate legible and understandable boundary

diagrams to illustrate the results of a change impact analysis. A user

must be able to look at these diagrams and be able to trace the impact

of their change from component to component with little difficulty.

8. The boundary diagrams generated by the tool must be able to be exported

for the purposes of documentation.

9. The tool must not exceed an operational time of 15-20 minutes for a single

analysis operation for any of the models used by our industry partner.

This is in order to not significantly interfere with the development process

of the user.

3.1.4 Limitations

As already mentioned, the BDT uses metadata that captures connections

betweens Simulink models to properly traverse the dependencies between

individual models. The format of the metadata is specific to our industry

partner’s system for which the tool was originally built. However, the tool is

designed such that the format of the metadata is well encapsulated so that the

tool can be easily modified for an application on another embedded controller.

Also, the current implementation of the BDT only traces to CAN network

interfaces. Support for additional network interfaces can be added in the

future and is subject to the same caveats with respect to metadata, since tool

functionality built to parse metadata for one company may differ from another.

In the future when support for AUTOSAR as a standard is widespread, this

28

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

issue can be avoided as companies will take a unified approach to how metadata

is represented.

3.1.5 Software Architecture

The BDT is built upon a layered hierarchical software architecture consisting

of three layers, with the USES hierarchy shown in Figure 3.1. Each box

represents a software module which contains one or more .m files. The A USES

B relation, where A is a module and B is a module or an external file, represents

a relationship where a software module A calls a function or functions from

module B or interacts with external data not contained in a software module

(such as a data file).

The first layer can be denoted as the Interface Layer, wherein modules

provide an interface between the user and the BDT itself. This layer consists

of the following modules:

1. Boundary GUI — A module which contains all of the interfaces for the

analysis component of the BDT operation. This module hides the function

interface, arguments, and configurations for the impact anaysis operation.

2. Diagram GUI — A module which contains all of the interfaces for the

diagram generation component of the BDT operation. This module

hides the function interface, arguments, and configurations for the impact

analysis operation.

The second layer can be denoted as the Application Logic Layer, consisting

of the followingmodules:

29

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

1. Boundary Analysis - A module which contains all of the logic related to

the impact analysis. This hides the algorithm of how the impact analysis

is performed.

2. Diagram Generation - A module which is used to generate the boundary

diagrams themselves. This hides the algorithm for creating the differ-

ent views implemented as the boundary diagrams, and generating the

diagrams themselves.

The final layer can be denoted as the Data Interaction layer, consisting of

modules that interface with external data from the BDT for use in the main

Application Logic layer. Modules in this layer include:

1. ReachCoreach — The module responsible for finding impacted or im-

pacting blocks and signals at the model level. It hides the algorithm for

performing impact analysis on a model.

2. GetAffectedCAN — The module responsible for finding impacted CAN

signals from a set of blocks. This hides the method and metadata used

to determine which blocks affect the CAN network.

3. GetAffectingCAN — The module responsible for finding CAN signals

that impact a set of blocks. This hides the method and metadata used

to determine which blocks are affected by the CAN network.

4. FindInputs — The module responsible for finding the inputs to a model

that are affected by a set of blocks. This hides the method and metadata

used to determine how output blocks of a model are connected to input

blocks of another model.

30

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Reach/Coreach FindInputsGetAffectedCAN

Boundary
Analysis

BoundaryGUI

DiagramGUI

Boundary
Diagram

Generation

GetAffectingCAN FindOutputs

Dependency
Metadata

CAN Mapping
Metadata

Simulink Model

External Data
Software
ModuleUses Relation

Legend

Figure 3.1: The USES hierarchy of the BDT’s structure

5. FindOutputs — The module responsible for finding the outputs to a model

that are affect a set of blocks. This hides the method and metadata used

to determine how input blocks of a model are connected to output blocks

of another model.

31

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

3.2 Tracing Between Models and to/from Net-

work Interfaces

In many industrial applications, individual models in a large Simulink system

are often not connected explicitly via signal lines in a master Simulink model.

Instead, the connections between Simulink models are specified via external

files. In the case of our industry partner, the connections between models are

stored in a dependency matrix, which is then instantiated at run-time by base

software. The automotive industry is moving towards utilizing the AUTOSAR

standard for defining the connections in a standard way, but it is not uncommon

for companies to still be utilizing existing in-house solutions or to be in the

process of migration. The current implementation of the BDT assumes that

connections between models are represented using our industrial partner’s

dependency matrix, implemented as an Excel spreadsheet, but as AUTOSAR

becomes the standard, the tool could easily be adapted for AUTOSAR, and

therefore become more general.

The Reach/Coreach Tool cannot trace the impact of a change beyond the

boundaries of a model. In order to conduct inter-model forward tracing, as

well as trace to network interfaces, once an initial reachability analysis of a

change in a model (as performed by the Reach/Coreach Tool) reaches the

model’s affected outputs, the BDT parses the data representing the connections

between Simulink models and to network interfaces, as stored in the dependency

matrix and CAN mapping sheet, respectively. This information is then used to

continue the reachability analysis from the model’s affected outputs in order

to find affected parts of other models. The flowchart of the BDT reachability

analysis is as shown in Figure 3.2.

32

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Perform reachability
analysis within the

model

Add to the map of
affected CAN signals

Find inports of
other models

affected by reached
outports

Do any reached
blocks affect the

CAN?

Append found
inports to the list of
blocks to continue
the impact analysis

from

Perform reachability
analysis from first
inport in the list

Is the list empty?

Yes

No

Record impacted
models and inports

in map

Yes

Return maps as
results of impact

analysis

Remove first inport
from the list

Remove first inport
from the list

Has an analysis already
been performed from the

first inport on the list?

Figure 3.2: A flowchart of the BDT reachability analysis

33

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

An initial reachability analysis within a model is first performed from a

selection of changes using the Reach/Coreach Tool. The analysis returns a

list of reached blocks within the model. The Boundary Diagram Tool then

checks this list for reached outports of the model, and identifies any inports

in other models that depend on the reached outports. These inports in other

models are added to a list of blocks from which new reachability analyses

are performed, hereafter referred to as the recurse cell. Next, the tool checks

the list of reached blocks and identifies reached blocks that affect the CAN

interface. The tool then performs a reachability analysis for the first block

in the recurse cell, removing it from the list. The process then repeats. The

order in which reachability analyses occur when tracing the impact to affected

models is breadth-first. If the initial reachability analysis performed within a

changed model is considered to be at depth zero, all analyses within immediately

affected models would be considered to be at depth one, etc. All analyses to

be performed at a certain depth would have to be performed before beginning

any analyses at the next depth. As noted, when each individual reachability

analysis concludes, some data is recorded, which includes the depth of the

analysis at which the reachability analysis from this input occurred. For a

coreachability analysis, the algorithm is analogous, as shown in Figure 3.3. [

The dependency matrix used by our industry partner identifies, for each

model, the other models that are dependent directly on the model’s explicit

outputs. The BDT implements a function that parses the matrix and identifies

models with the top level inputs connected to a reached output (or top level

outputs corresponding to coreached input). The function’s inputs include the

file containing the dependency matrix and the traced blocks from a reach-

ability/coreachabilty analysis. The function returns blocks in other models

34

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Perform
coreachability

analysis within the
model

Add to the map of
affecting CAN

signals

Find outports of
other models

affecting coreached
inports

Append found
outports to the list

of blocks to
continue the impact

analysis from

Perform
coreachability

analysis from first
inport in the list

Is the list empty?

Yes

No

Record impacting
models and

outports in map

Yes

Return maps as
results of impact

analysis

Remove first
outport from the list

Remove first
outport from the list

Has an analysis already
been performed from the
first outport on the list?

Are any of the coreached
blocks affected by the CAN?

Figure 3.3: A flowchart of the BDT coreachability analysis

35

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

connected to these traced blocks. Given that the encoding of the connections

between models is going to differ from company to company (or even system

to system), the function was carefully designed as to encapsulate this encoding.

This makes designing for any changes in the encoding simple.

With respect to tracing to network interfaces, the current implementation

of the BDT only traces to CAN interfaces. The data used for identifying

connections to the CAN is referred to as the CAN Mapping Sheet. The CAN

Mapping Sheet denotes which blocks in the model send data to or receive

data from CAN network interfaces at run-time; in the case of our industry

partner through external function calls. The BDT implements a function that

determines if any reached blocks correspond to blocks sending data to the CAN,

or if any coreached blocks correspond to blocks receiving data from the CAN.

The inputs to the function are the CAN Mapping Sheet and the blocks traced

from a reachability/coreachabilty analysis. The function returns information

regarding the affected CAN elements as output. This information includes

CAN signal name, the name of the message that the CAN signal corresponds to,

and the name of the CAN controller it belongs to. All functionality regarding

the CAN interface is confined to this function to facilitate ease of adapting it

to a differently formatted CAN mapping sheet, or in the future to AUTOSAR

representations of CAN mappings.

3.3 Correctness of the BDT Analysis

The correctness of the BDT is almost entirely dependent on the correctness of

the Reach/Coreach Tool. Currently, proving the effectiveness and correctness

of the Reach/Coreach Tool via a formal proof is incredibly difficult, due to a

36

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

lack of formal semantics for Simulink blocks. This problem is compounded by

the fact that as newer versions of MATLAB/Simulink are released, new blocks

are constantly being released for use in Simulink. However, given the design

of the Reach/Coreach tool and how it is used in the BDT, we can still show

that the Reach/Coreach Tool (and therefore the BDT) can remain correct with

minimal maintenance. This can be demonstrated as follows:

For the base case, assume that the Reach/Coreach Tool is correct, in

the sense that no false negatives are returned (there aren’t any impacted

blocks/signals that are missed by the tool). This means that for the set of

all blocks currently in use in Simulink, the Reach/Coreach Tool works as

intended. When Simulink introduces a new block for use in Simulink, the tool

still produces correct results when performing the impact analysis for all blocks

the Reach/Coreach Tool previously worked with. Therefore, in order to ensure

that the tool works correctly with the set of all Simulink blocks including the

added block, only minor maintenance needs to be performed to add a new case

for the Reach/Coreach Tool for the block behaviour of the new block. After

this the behaviour of the Reach/Coreach Tool can be said to be correct for the

set of all Simulink blocks. This approach can be applied for any number of

Simulink blocks being added, and the tool would remain correct.

An alternative approach to proving correctness and effectiveness of the tool

is to perform an empirical analysis to measure the effectiveness of the BDT.

This will be discussed further in the Future Work section of this thesis.

37

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

3.4 Performance Considerations for Industrial

Applications

The initial implementation of the analysis component of BDT for tracing

between models and to network interfaces had unsatisfactory performance

in industrial applications. More precisely, during testing on large scale in-

dustry models, it was found that the reachability analyses performed by the

Reach/Coreach engine could take hours to complete. When considering that a

typical BDT analysis could include on the order of hundreds of these reachability

analyses, this result was obviously unacceptable. The Reach/Coreach engine

that the BDT was built upon was quickly identified to be the bottleneck.

3.4.1 Performance Improvements for Reach/Coreach on

Large Models

In order to identify functions that were candidates for performance improve-

ments, the Reach/Coreach Tool was run and profiled on some of the larger

industrial partner’s models. Matlab has a built-in profiler for Matlab functions

and scripts which can be used to find the number of times each line in the file

is executed, as well as the total time spent executing that line of code. In this

manner, several bottlenecks were identified. The first identified bottlenecks

were the function that finds Data Store Reads corresponding to a given Data

Store Write, and the function that finds Froms corresponding to a given Goto.

These functions include numerous checks to avoid finding the wrong block if

there exist shadowing Froms/Data Store Reads blocks in models where no such

shadowing exists. Modeling guidelines for Simulink (The MathWorks 2012)

38

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

state that designs with this kind of shadowing are against best practices. In

order to improve performance, the Reach/Coreach Tool checks, upon initializa-

tion, if shadowing exists in the model, and sets a flag indicating the presence

of shadowing in the model. This flag can be referenced by the functions for

which shadowing is relevant, and the excess computations can be skipped if

the flag indicates that there is no shadowing in the model.

The next bottleneck was traced to the numerous find_system calls being

made by the tool when searching for Data Store Reads that correspond to Data

Store Writes, or Froms that correspond to Gotos. The function find_system is

a built-in Simulink function that locates objects in a given Simulink model that

match a set of parameters specified by the parameters of the function. This

function is fast on small models, but for larger Simulink models (containing in

the order of 10 000 subsystems and 100 000 blocks), it can take a significant

amount of time, in the order of hours. To avoid this, we first identified the

functions where find_system was being called the most. It turns out that

the function calls were concentrated in the same functions where the first

described optimization was made, where they were being used to find From

blocks corresponding to a given Goto, or Data Store Read blocks corresponding to

a given Data Store Write. To avoid this, at the beginning of the Reach/Coreach

operation the From blocks for Goto blocks and Data Store Read Blocks for Data

Store Write blocks are identified once at the beginning and put in a map. This

map can then be referenced instead of performing these expensive function

calls.

To illustrate the scale of the improvements to the tool performance, we

compare post-optimization run-time of the tool with the initial run-time of the

tool on an example model. The initial run-time of the tool on the example

39

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

model was 53058.47 seconds. After the first optimization was made, run-time

decreased to 21676.428 seconds, cutting the run-time in half. The second

optimization further decreased the run-time on the example model to 6017.394

seconds. While the improvements were large, the resulting run-times were still

unsatisfactory—a reachability analysis on a single input of a model would still

take over an hour and a half.

Even after the first optimization, if was found that there were still excessive

calls being made to find corresponding From blocks to Goto blocks. As noted

in Section 2.2.1, whenever a block that controls execution of a subsystem is

reached, all blocks and signals within that subsystem are reached too. When

the tool then reaches all objects contained in the subsystem, it checks for any

From blocks outside of the subsystem that would correspond to reached Goto

blocks in the subsystem. The initial implementation was naive as it made

unwarranted checks for From blocks corresponding to local Gotos within the

subsystem. However, the local Gotos by definition cannot have a corresponding

From outside the subsystem. This was a particularly large issue in models used

by our industry partner, where many local Goto/From pairs are used to increase

model readability by reducing the number of signal lines. Therefore, the tool

was updated to avoid searching outside the subsystem for From blocks that

correspond to local Goto blocks.

The final bottleneck was due to a relatively significant amount of compu-

tation time being spent in checking whether a given port to be reached had

already been reached. The tool was modified to make use of Matlab’s set

difference function to check the list of ports to reach against the list of already

reached ports. This way, all ports to reach that have already been reached

would be removed in a more efficient way by avoiding several function calls and

40

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

conditional statements. This optimization further reduced the run-time of the

reachability analysis on the example model to 506.231 seconds from an initial

time of 6017.394 seconds.

No other improvements to the Reach/Coreach engine were identified that

would significantly reduce analysis run-time.

3.4.2 Cache Building

Even with the large performance improvements achieved with the optimization

of the Reach/Coreach Tool as described in Section 3.4.1, the performance of an

individual reachability analysis of the BDT was still not at a satisfactory level.

If each intra-model reachability analysis from one input of a model (using the

Reach/Coreach Tool) had a worst-case run-time of ten minutes, a BDT analysis

(which is composed of potentially hundreds of these reachability analyses) could

take over twelve hours. Even if the worst-case run-time for a single intra-model

reachability analysis from a single input of a model was reduced to one minute,

a full BDT analysis would still take hundreds of minutes—well above the target

for the tool.

To address this issue, the following approach was proposed. A cache is

constructed that stores the results of reachability analyses from each inport of

each model to all the model’s outputs. The results are used to avoid analysis

within unchanged models: with the cache, the only reachability analysis that

needs to be performed is the first one from blocks/signals of interest in a

changed model, as all other reachability analyses have already been performed

and the results cached.

The major benefit of this approach is a significant amount of time saved

41

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

in run-time for the average use case of the BDT. The cache building process

is essentially a one-time process. The cache can then be distributed to all

developers that are using the tool on the system for which the cache is built.

As previously stated, once the cache is built, only a single reachability analysis

would now need to be performed in the BDT analysis. This would be the initial

reachability analysis from any changed blocks within a model, from which the

user would wish to perform the change impact analysis for. From the reached

outputs of the model, the tool would find corresponding inputs in other models.

However, all subsequent reachability analyses would be replaced by referencing

the cache, dramatically decreasing run-time.

These run-time improvements do come at a cost. Most notably, cache

maintenance becomes a concern. Keeping the cache up to date becomes critical

for ensuring accuracy of the change impact analyses, and this would become

increasingly difficult in an agile development environment.

Implementation of Cache

The cache-builder function performs a series of reachability analyses to populate

the cache. For each model in the system, from each of its inputs, a reachability

analysis within the model is performed using the Reach/Coreach Tool. After

each individual reachability analysis is completed, the function finds any top

level outputs of the model in the list of reached blocks. Then, these outputs

are stored in a list that is mapped to the corresponding input—the input from

which the reachability analysis started. The cache is saved to a .MAT file,

which contains Matlab formatted data. This file can be used to load the cache

into the Matlab workspace, where it can be accessed and used by the BDT for

the BDT analysis operations. The cache file can be distributed with the tool.

42

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

After the initial implementation of the cache, it was found that the run-time

of the cache-builder was too long. While building the cache is a one-time

cost with each iteration of the system, it is still desirable to ensure that upon

integration it will not impede the software development process by creating

unnecessary delay between integration. Therefore it was established that the

cache-builder should be able to complete its operations overnight. Initial testing

showed that this target was not achieved, so further optimizations would need

to be made to the Reach/Coreach Tool. These optimizations were made much

in the same way as before. Individual reachability analyses test cases that ran

the longest were identified, and then profiled to find the bottlenecks. When

these optimizations didn’t prove to provide enough speedup, parallelization

was considered to be the next best alternative to improve the cache building

tool’s performance.

The cache building operation presents a perfectly parallel problem. Each

individual reachability analysis is entirely independent from the others, and

therefore requires no communication between threads. This makes the cache-

builder a particularly simple problem to parallelize, and parallelization should

produce speedup directly proportional to how many threads are being used. To

ensure optimal results for whatever machine it is run on, the cache-builder was

parallelized to run on a configurable number of cores. We built the cache using

two cores. Results showed a speedup with a factor slightly under 2. This is due

to an uneven distribution of work across threads. The work is divided naively

between the threads, but some reachability analyses have longer run-time than

others.

It is notable that building the cache for the BDT coreachability analysis

does not require the same time investment as the BDT reachability operations.

43

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Instead of having to perform a series of coreachability analyses from the outports

of the system, the backward cache can be produced simply by taking an inverse

mapping of the forward cache. Additionally, in order to obtain a correct analysis

one needs to ensure that the cache has been built for the most up to date

versions of all models in the system. Each time there is an update to models in

the system, the cache for the updated models would need to be rebuilt.

3.5 Filters for Impact Analysis

Examining potential use cases for the BDT by the industry partner, it was

found that a full impact analysis throughout the entire system was often not

necessary. Specifically, two use cases were identified that do not require full

analysis across models: 1) when the developer only needs to see the impact by

a change on adjacent models in the system, and 2) when the developer only

cares about impact through certain models of interest.

When the developer needs to find only the immediately impacted models,

there is no reason to continue the analysis after the propagation of impact to

models immediately adjacent to the starting model in the system being analyzed.

Therefore, a feature was added to restrict the depth of the impact analysis, as

defined in Section 3.2. When a maximum depth is defined by the user, the

BDT would not perform any reachability analyses past the indicated depth. In

extremes, the maximum depth can be set to 1 to find only immediately impacted

models; or it can be left unrestricted for a full depth analysis throughout the

entire system.

A whitelist has been implemented for the use case when the developer is

interested in the propagation of the impact through only certain model: when

44

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

using the whitelist the propagation of the impact will only be analyzed for the

included the models. All other models would not be included in the results,

and the propagation of the impact would not be traced through them.

3.6 Measuring Impact

The BDT quantifies the impact of a proposed change using the impact metric.

This metric is useful in estimating the risk of implementing a proposed change.

Further, it provides an indication of the testing effort and implementation effort

required for introducing a change to the system. The metric is defined by our

industry partner as follows. Let n1 be the number of impacted Level-2 safety

models, n2 be the number of impacted models, n3 and the number of impacted

CAN signals. Then, the impact metric is defined as:

im = w1 · n1 + w2 · n2 + w3 · n3,

where w1, w2, w3 ∈ R+. The values for w1, w2, and w3 are weights that can

be defined by a user based on the risk associated with each type of impacted

artifacts. This is because the inherent risk associated with impacting any of

these artifacts is dependent on the context of the user’s system. They can be

affected by any number of factors such as the number of Level-2 safety models

compared to other models, the number of CAN signals available in the system,

and how many systems the CAN signals propagate to. Therefore, implementing

static weights without considering the context of the system could lead to

incorrect risk assessment. However this means that it is very important for the

user to produce good values for these weights in order to get full value from

45

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

using the tool.

In general, an organization can define an impact metric to suit its needs: the

metric can be customized according to the specifics of the embedded software

at hand, as well as the specifics of the change management process and the

metric’s intended application in the process. Other metrics can be defined that

e.g. account for the number of impacted blocks within models, the number of

affected CAN controllers, etc.

3.7 Summary

This chapter discussed the requirements for the BDT, and described the imple-

mentation of the impact analysis component of the tool. These requirements

are relevant to the boundary diagram generation discussed in the next chapter,

and the implementation of the impact analysis component of the tool itself

affects both how the boundary diagrams are generated as well as how the tool

is used in the change management process.

46

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Chapter 4

Boundary Diagram Generation

This chapter describes the approach used in the BDT to present results from

the impact analysis by using various forms of diagrams. Besides marking

dependencies within Simulink models, the BDT also presents impact analysis

results using various other diagrams. The use of diagrams was initially inspired

by boundary diagrams. Although the diagrams generated by the BDT include

boundary diagrams, several of the diagrams produced by the tool are not

strictly boundary diagrams, but rather block diagrams in general (e.g. context

diagrams, and slices of context and boundary diagrams showing only relevant

components and dependencies identified by impact analysis). However, for

the purposes of this thesis, by a slight abuse of the terminology, the diagrams

produced by the tool will be referred to as boundary diagrams.

First, the implementation of boundary diagram generation is discussed in

Section 4.1. Legibility concerns with with generated boundary diagrams are

described in Section 4.2. Next, a solution to the issues presented in Section 4.2

is presented in Section 4.3. Finally, several diagram views are presented in

Section 4.4 to represent specific information from the full impact analysis.

47

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Figure 4.1: Illustration of issues with the boundary diagram generation in
Microsoft Visio

4.1 Boundary Diagram Generation: Implemen-

tation

Several possible implementations for boundary diagram generation were consid-

ered. The initial idea was to generate diagrams in Graphviz (GraphViz 2018),

but it was later discovered that our industry partner would not allow the use

of open-source software as part of their toolchain. Microsoft Visio was then

evaluated for diagram generation as it is a commercially licensed third-party

tool that was already available to our industry partner. Initial results were

promising, but several issues were discovered when attempting to create even

moderately complex boundary diagrams. As shown in Figure 4.1, there were

several issues with line routing in the diagram. Lines would consistently overlap

at their start and endpoints, making the diagram difficult to read. Being able

to differentiate between individual lines is very important for understanding

how impact propagates through this diagram.

To address these issues, Matlab/Simulink was chosen for the implementation

of boundary diagram generation. Although the directed graph generation capa-

bilities of Matlab are fairly limited and would not be suitable for generating

48

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Model34

Model36

Model42

Model46

Model50

Model52

Model62

Model64

Model72

Model91

Model94

Figure 4.2: An example of a full feedback boundary diagram

boundary diagrams, the open-source Auto Layout Tool (McSCert 2018a)—

properly adapted to handle some specific requirements of layout of boundary

diagrams—has automatic layout capabilities required to generate comprehensi-

ble diagrams. Using Simulink for diagram visualization also offers developers a

familiar look-and-feel, and keeps the tool implementation within Matlab.

4.2 Legibility Concerns

When testing the Simulink implementation of boundary diagram generation

using the results of the impact analysis on our industrial partner’s controller, a

new issue presented itself. For example, observe Figure 4.2, which shows the

impact from Model36 on Model42. Given the high coupling of the Simulink

models within the electrified powertrain controller, a change made in a model

has large impact on other models. Thus, the resulting diagrams for large

industrial systems are excessively large and complicated. Even finding only

the models that had been directly impacted by the change on the diagram

from Figure 4.2 proved to be a difficult task. Due to low readability, these

49

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

full impact diagrams are often not useful in documenting/understanding the

impact of a change.

For smaller systems of Simulink models, the full impact diagrams could still

be readable. In general, this diagram, hereafter referred to as a full feedback

diagram, was typically found to be impractical for analyses of large systems

of Simulink models. Legibility concerns regarding the diagrams need to be

addressed to make them suitable for industrial use.

4.3 Interactive Exploration

The first method of addressing legibility concerns with the full feedback boundary

diagrams was to implement interactive exploration of the diagrams, as a well-

known technique for visualization of large graphs (Herman, Melançon, and

Marshall 2000). First, the tool produces an initial diagram showing just the

initial model where a change was implemented, and its immediately affected

models and CAN interfaces. Each model and CAN interface in the diagram is

represented as a node, with edges between nodes representing the data flow

between them. The user can then expand the diagram from a selected node,

showing how the impact of the change further propagates from the node to its

immediately affected models or CAN interfaces. This is shown in Figure 4.3,

which generates an interactively explorable diagram for a different impact

analysis: namely, the impact from Model45 to Model9 to a depth of 3. After

the diagram demonstrating the immediate impact of Model45 is generated in

Figure 4.3a, the developer then chooses a trace to explore by selecting a model

from a set of immediately impacted models, e.g. Model24 or Model80. The

BDT then shows immediately affected models for these models as shown in

50

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Figure 4.3b.

Figure 4.3c shows how the diagram would look if every node is recursively

expanded, essentially showing all possible paths that the impact propagates

from Model45 to Model9. Note that no feedback loops exist in the diagram even

though the diagram shows the same impact analysis results from Figure 4.2.

This is because in the interactive exploration diagrams, all loops in the diagram

are unwound in order to increase legibility and comprehensability of diagrams.

This is achieved by introducing a fresh node to the boundary diagram each

time a model is encountered in an impact analysis, whether or not a node

for that model was previously already created in the diagram. The naming

convention for the nodes seen in Figure 4.3 is as follows: ModelName_d_i,

where ModelName is the name of the model, d is the depth at which the model

was impacted, and i is the unique identifier of the model’s copy at depth d.

Also, the tool allows the user to interactively click on a line in the interactive

exploration diagram and view the names of all associated signals to that line.

Generating the initial immediate impact and expanding a node takes a few

seconds for each node.

The approach of interactive exploration coupled with the unwinding of

loops in the boundary diagram has substantially improved the legibility and

comprehensibility of the BDT generated diagrams. It becomes much more

obvious for any user to identify the relative order in which a change impacts

several models, which can be quite difficult to identify in a diagram with

numerous feedbacks. Additionally, unrolling the feedback allows the diagram

to be drawn as a strict left-to-right hierarchical graph. This makes parsing the

diagram far easier for any user to follow and makes interactive exploration for

the diagram far more intuitive.

51

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Model45_0_0

Model45_0_0

Model21_1_0

Model72_1_0

CanSig6

CanSig1

CanSig7

CanSig2

(a)

Model45_0_0

Model45_0_0

Model21_1_0

Model72_1_0

CanSig12

CanSig4

CanSig13

CanSig5

Model9_2_0

Model9_2_1

Model9_2_2

Model21_2_0

Model21_2_1

Model30_2_0

(b)

Model45_0_0

Model45_0_0

Model21_1_0

Model72_1_0

CanSig19

CanSig11

CanSig20

CanSig12

Model9_2_0

Model9_2_1

Model9_2_2

Model21_2_0

Model21_2_1

Model30_2_0

Model9_3_0

Model9_3_1

Model9_3_2

Model9_3_3

Model9_3_4

Model9_3_5

Model9_3_6

(c)

Figure 4.3: An example of an interactively explored boundary diagram for the
impact of Model45 to Model9.

52

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Model4_3_0

Model3_2_0

Model2_3_0

Model2_1_0Model1_0_0

[Model3_2_0]

Figure 4.4: Gotos are used for feedback

Of course, while the diagram from Figure 4.3c can be generated via inter-

active exploration, the BDT can also generate it without intermediate steps.

For the case of the example from Figure 4.3c, while traces may encounter the

same model multiple times, each time it is with different signals. If a trace

were to encounter the same signals multiple times, then its exploration would

continue looping indefinitely. In this case, Simulink Goto constructs are used to

illustrate which block represents the model slice with the re-impacted signals.

This is illustrated in Figure 4.4: the output signals of Model2_3_0 are fed

back to Model3_2_0.

4.4 Specific Diagram Views

Several views were identified as useful to present specific information from the

full impact analysis. These views complement the full feedback diagrams and

interactively explorable diagrams described above. For possible applications of

these different types of diagrams, please refer to Section 5.3.

4.4.1 Immediate Impact

This view shows the initial model from which a change was made, and the

models and CAN signals which are directly affected by this change.

53

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Model39

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

107

106

105

104

103

102

101

100

99

98

96

95

94

93

92

91

85

84

83

82

81

80

79

72

66

65

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

54

52

97

90

89

88

87

78

86

77

75

74

73

71

70

61

69

76

68

67

64

63

62

53

60

59

58

57

56

55

1

(a) The top level of a Model39.

Model39

Model69

CanSig1

CanSig2

CanSig3

CanSig4

CanSig5

CanSig6

(b) The immediate impact of a change
Model39

This view is shown in Figure 4.5b. Effectively, the diagram represents a slice

of Model39’s context diagram that shows only the impacted parts of Model39’s

interface, which is shown in Figure 4.5a. It deliberately excludes the unaffected

inputs and outputs. Included in this slice are both the models and network

interface components immediately impacted by the change. In the case of

Figure 4.5b, 6 CAN signals and 1 other model within the system are impacted.

4.4.2 Model A to Model B

This view shows how the impact of a change in a model A propagates to a

model B. Sometimes, a developer might be interested in the impact of change

to a specific model of interest. This view can be represented as a full feedback

diagram, an interactively explorable diagram, or an immediate impact diagram.

The Model A to B view shows a slice of the full impact of a change impact

analysis originating in Model A, where only part of the impact that propagates

to Model B is included. An example of the Model A to B filter being used is in

Figure 4.3, where the diagram shows the impact of a change in Model36 on

Model42.

54

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Level-1

Model6

Model36

Model52

Model69
Signal1
Signal2
Signal3
Signal4
Signal5
Signal6
Signal7
Signal8
Signal9
Signal10
Signal11
Signal12
Signal13
Signal14

Figure 4.6: An example of a boundary diagram view showing the change impact
on safety

4.4.3 Impact on Functional Safety

ISO 26262 requires that each change request must undergo a comprehensive

impact analysis to identify impacts to functional safety (ISO 2011a). Our

industrial partner uses the E-Gas 3-Level Monitoring Concept (Workgroup

2013). This monitoring concept is composed of three levels. Level-1 is the

functional level, which contains the control software. Level-2 monitors for any

defective processes in Level-1. Level-3 is the controller monitoring level, which

independently tests the control software at run-time. The (sliced) context

diagram in Figure 4.6 shows the impact of changes within Level-1 models (non-

safety, control models) on Level-2 (safety) models—in this particular case, only

one safety model is affected. For systems built to comply with ISO 26262, a view

can be provided demonstrating the impact of a change originating from Level-1

(non-safety, control models) to Level-2 (functional safety models). This view

abstracts all of the Level-1 models into a single black box, and demonstrates

55

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

impacted signals connecting to individual Level-2 safety models and how the

impact of that change propagates from those initial Level 2 models through the

rest of Level-2. This can be shown in Figure 4.6, where all the control models

are abstracted to the black box denoted as Level-1.

This view aids in satisfying the ISO 26262 requirement which states that

changes to a system require a change impact analysis to determine the impact

on functional safety. It is important to note, however, that the tool only traces

through Simulink models and to the network interfaces to other non-Simulink

components of the system. To fully comply with ISO 26262, there should

be analyses performed beyond these interfaces to other connected software

components in addition to the analysis from the BDT as described in Figure 5.3.

56

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Chapter 5

Boundary Diagram Tool in

Software Change Management

This chapter describes a generic process for managing changes within an

industrial-scale software system and details the BDT’s integration into the

process. Section 5.1.1 introduces a generic software change request procedure.

Section 5.2 discusses practical considerations for updating and maintaining the

BDT’s cache without significantly interfering with developer workflow. Finally,

Section 5.3 discusses opportunities for the BDT’s application in several different

phases of the aforementioned software change management procedure.

5.1 Software Change Management

5.1.1 The Software Change Procedure

The change procedure referenced in this thesis is a generic process for managing

changes within industrial-scale software systems, as applied to the model-based

development. This generic procedure, presented in Figure 5.1, parallels the

57

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

change request procedure used by our industrial partner. It involves changing

the system iteratively: between two iterations, system-level change requests

are analyzed, implemented, the modifications are integrated, and a working

version of the system (called a baseline) is used by the developers as a base for

the next set of changes. The procedure outlined here is for one system change

between two baselines.

The procedure begins with a request for a system-level change that needs

to be made to the system, called the system change request. Each system

level change is first analyzed and evaluated to determine whether the change

will indeed be implemented, and, if so, when to schedule it. If the system

change request is determined to be worthwhile, it is then decomposed from the

system-level to several model-level change requests, shown in Figure 5.1 as a

software change request. These software change requests are then assigned to

developers, and the changes are evaluated again with respect to their impact

on the functionality of individual models. If a software change is determined

unsuitable, the system-level change decomposition might be revisited, and

the implementation of the system change (and all of its descendant software

changes) may be rejected or postponed.

If all software change requests have been approved, the individual developers

derive a set of specific requirements for the change that they are to implement.

Then, the developer designs and implements the necessary changes to the model

to satisfy the requirements. The resulting model is then tested against the newly

derived requirements, as well as all existing requirements to assure that the

implemented changes do not interfere with existing functionality. When testing

has been completed, the changes and the accompanying design documentation

are reviewed by a senior engineer to approve the changes for integration, where

58

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Figure 5.1: Change Request Procedure

system-level conflicts between individual software change requests are resolved.

The newly integrated system is then tested using model-based design techniques

such as Model-in-the-Loop, Hardware-in-the-Loop testing, etc.

5.2 Maintaining Cache

As mentioned previously in Section 3.4.2, one of the challenges with the im-

plementation of the tool is ensuring that the cache is up-to-date. Developers

typically work implementing changes to models concurrently. Thus, any evalu-

ation of an impact analysis will not take into account all of the changes being

made simultaneously by other developers, but rather reflect the impact of the

change against the baseline. For example, let us assume that two developers are

working in parallel on software change requests for Model A and Model B. If

59

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Model B is dependent upon Model A, the impact analysis from a change within

Model A may show that the change in A impacts Model B. However, any

further propagation from Model B will not take into account any modifications

currently being made to Model B. Therefore, an impact analysis on a model will

only be accurate if the cache has been updated to reflect all of the model-level

changes that are decomposed from a system change request.

Building the cache for our industrial partner is a task that takes approxi-

mately 10–12 hours. Performing a 10–12 hour operation to rebuild the cache

every time a developer makes a change would be unacceptably intrusive in

developer workflow. The current implementation of the tool can perform a less

intensive “update” to the cache, where the cache is only rebuilt for selected

models. The cache can then be rebuilt for any model for which there were

changes since the previous version of the cache was built. This reduces the full

10–12 hour cache building operation to a more manageable run-time. However,

this reduced run-time will vary from model to model. For the largest models in

use by our industry partner, the update takes several hours. For smaller models,

updates can take in the order of minutes. Additionally, distributing the cache

to each developer every time an individual developer makes a modification to a

model is infeasible. Therefore, ensuring that all impact analyses are performed

with an up-to-date cache is infeasible in practice. And so the frequency and

timing of cache updates must therefore be carefully determined based on the

tool’s intended application.

60

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

5.3 Applications in the Software Change Proce-

dure

Many of the impact analysis activities hinge on determining whether some

model or network interface of interest is impacted by a change. This can be

determined by selecting the modified model elements for use as the starting point

of the BDT reachability analysis. Alternatively, Simulink’s Model Comparison

can be used to find differences between a model prior to, and after a change;

the BDT reachability analysis can then be applied from the changed parts of

the model. The resulting trace is useful in determining not just if a model is

impacted, but also how the impact propagates through the system to reach it.

The BDT has several possible applications in the software change procedure

of Figure 5.1. It can be used to perform impact analysis to aid in compliance

with safety standards such as ISO 26262, inform decisions regarding whether to

integrate a change to a given model, and aid in relieving testing and verification

efforts for models both during implementation and integration of changes. The

applications will be discussed next.

5.3.1 BDT in Software Change Request Analysis and

Evaluation

ISO 26262 requires that each change request must undergo a comprehensive

impact analysis (ISO 2011a). Such an impact analysis would be performed in

the Analysis and Evaluation phase of the software change procedure depicted

on the right of Figure 5.1. The impact analysis requirements are described in

Section 8.4.3 of ISO 26262, Part 8 (ISO 2011a). They dictate five main points

61

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

be addressed by the impact analysis. These points are as follows:

1. the identification of the type of change request,

2. the identification of work products that are changed and/or affected,

3. the identification and involvement of the parties involved with and/or

affected by the change,

4. the potential impact on functional safety, and

5. the scheduling for realization and verification of the requested change.

Of these items, the BDT can assist in addressing the latter four whereas the

first item, the type of change request, should be determined by the developer.

Although the impact analysis as per ISO 26262 should identify the impact

on all relevant work products—not Simulink models only—the use of the BDT

at the Simulink level can identify affected models and CAN network interfaces.

This information can then be leveraged to identify parties affected by the change

as well: after finding affected models and network interfaces, the developer can

alert other developers who are responsible for any affected models. Since the

BDT can identify affected models that are specifically designated as functional

safety models, as demonstrated in the Impact to Safety diagram discussed in

Section 4.4.3 and the impact metric, the impact on functional safety can be

addressed. If models that affect functional safety are identified, the impact

analysis results are used to inform the appropriate safety management process.

Finally, while the tool does not directly estimate the time taken to implement

and verify a change, information gleaned from the generated diagrams as well

as from the impact metric could prove a useful aid in performing such an

estimation.

62

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Finally, we note that, in order to perform the impact analysis using the BDT

in the Analysis and Evaluation phase of the software change procedure, the

developer needs to rely on their own skills, experience, and grasp of the model

where changes would be implemented to estimate which model elements would

be modified in the change implementation, and perform the analysis from those

elements. The process typically involves an overestimation of the parts of the

model to be modified—consequently, the impact analysis results might present

a false positives with regards to the actual impact of the actual change that

would be implemented. However, the results are still the safest approximation

of the impact of the planned change given the information available at this

phase of the software change procedure.

5.3.2 BDT in Change Implementation

The core functionality of the BDT—to identify models and network interfaces

impacted by a change—can be leveraged to provide an immediate impact

analysis of a change in a model, identifying the models and network interfaces

directly connected to the model where the change is made. This allows the user

to easily identify other developers with whom they need to collaborate to ensure

that implementation of the change proceeds smoothly. For example, if the data

type of a top-level outport of a model is changed, the user can notify developers

of other models that use that outport to accommodate for the change in data

type. Through use of the generated diagrams or the impact metric to view

the full scope of the impact of a change, a developer can be alerted when the

scope of change’s impact is larger than the expected impact determined in the

change request evaluation. These diagrams can also be included in the design

63

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

documentation to be reviewed in the change request procedure by management

as part of the procedure described in Section 5.1.1.

Finally, the BDT’s Reach/Coreach engine can be used at a local level, within

a Simulink model, to improve model comprehension, aid in refactoring, and

identify dead/unreachable parts of the model, as reported in (Pantelic et al.

2018). Further, these activities can be extended at the inter-model level using

the full capabilities of the BDT to trace beyond the model boundaries and

continue the impact analysis.

It is important to note, as mentioned in Section 5.2, individual software

changes on different models are performed in parallel. This means that the

impact analysis during this phase of the software change procedure does not

take into account any implemented changes made on other models. Thus,

possible unintended interactions between changes made to individual models

will not necessarily be considered.

5.3.3 Impact Analysis in Regression Testing

Good software development practices indicate that, once a change is made to a

Simulink model, the model must be verified with respect to its requirements.

This includes existing requirements as well as new requirements generated in

the software change procedure. In order to ensure any previous requirements

are still satisfied, a suite of regression test cases corresponding to these existing

requirements that can be autonomously ran after a proposed change is imple-

mented to ensure that said requirements still hold. As complexity of software

components increases, the number of regression test cases required to verify all

existing requirements increases and a larger computation time is required to

64

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

verify this suite of regression tests.

In the related work on UML diagrams, regression test cases are classified

into three types: obsolete, retestable, and reusable (Briand, Labiche, and He

2009). The obsolete test cases are the test cases that are no longer applicable

to the modified model: e.g., an input has been deleted from the original model.

Retestable test cases are test cases that need to be re-run due to a change

potentially affecting the result. Reusable test cases are test cases for which

their result would be completely unaffected by the change.

The BDT can be used to potentially identify test cases which are reuseable

as opposed to retestable, and thus can reduce testing effort needed to perform

regression testing upon making a change. Additionally, future testing efforts

can be saved by identifying certain test cases as obsolete. Using the BDT in

this manner requires an existing regression test suite with a mapping from

these regression tests to corresponding components (blocks, signals) in the

model. Automated test selection can be accomplished for regression tests for

an individual model after making a change, or for regression tests of the system

at large after making a change, since the BDT can perform its impact analysis

beyond the initial model to the rest of the system.

Additionally, the BDT and an off-the-shelf tool for automatic test generation

for Simulink models can be integrated in the following manner. After a change

has been made to the Simulink model, the BDT can be used to make a slice of

the model that only includes blocks and signals that either affect any changed

blocks and signals or are affected by the changed blocks or signals. Then, the

off-the-shelf tool can be used on the model slice to generate test cases that

thoroughly exercise model’s behaviour. This would reduce the off-the-shelf

tool’s total testing time, and as well as allowing the BDT to classify the test

65

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

cases, update the regression test suite accordingly, and run the retestable cases.

The functionality for regression test case selection has not been implemented

yet.

5.3.4 Impact Analysis in Integration

By the time the integration phase of the software change procedure occurs,

all model-level change requests have been completed. However, as noted at

the end of Section 5.3.2, possible interactions between individual changes of

different models would not be identified by any impact analysis performed

in the implementation phase of the software change procedure. This can

be rectified during the integration phase. After all the changes have been

implemented, the BDT cache can be rebuilt using the updated models. The

impact analyses performed by each developer can be run again in the context

of the fully integrated system. By doing so, developers can identify and

investigate any unexpected impact. The results from the impact metric or

generated diagrams from these analyses can also be included in the development

artefacts documenting integration.

66

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Chapter 6

Conclusions and Future Work

This thesis proposes the BDT, a tool for impact analysis within Simulink

designs of embedded systems. The tool improves safety by performing an

impact analysis, which can identify additional changes that may need to be

made that may otherwise have not been made. In doing so it additionally

improves developer productivity by providing automation of impact analysis

as part of the software change management process. In particular, it supports

analysis, implementation, and verification of software changes. As ISO 26262

requires impact analysis to be performed for any software change request (ISO

2011a), the results from the impact analysis with the BDT aid compliance with

the standards. For the purposes of this thesis, the tool was implemented for

a specific embedded system: it tracks impact of changes in the supervisory

controller of the electrified powertrain system of our industrial partner. This

system consists of dozens of Simulink models, which contain hundreds of

thousands of blocks and tens of thousands of subsystems.

The BDT was built upon the Reach/Coreach Tool, a tool that performs

model slicing within a single model. The BDT leverages this functionality

67

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

to perform impact analysis within a Simulink model, and extending that

functionality to a system of Simulink models. The inter-model analysis stops

at the boundaries indicated by network interfaces, where the models interface

with the communication hardware such as CAN. To implement inter-model

tracing and tracing to network interfaces, the BDT leverages dependency

matrices and CAN mapping sheets that specify connections between models,

and communication interfaces, respectively. The Reach/Coreach Tool underwent

significant optimizations in order to achieve better performance. Consequently,

the Reach/Coreach Tool now represents a robust model slicing engine that can

be used in other industrial applications as well.

The BDT can present impact analysis results directly within Simulink

models, as well as using various boundary diagrams. Boundary diagrams

provide different views of the results, at different levels of abstraction. Due to

the complexity of our industrial partner’s software system, presenting impact

propagation through a complex web of dependencies in a legible manner proved

difficult. To address the issue, techniques such as interactive exploration and

loop unwinding for visualizing large graphs were applied. This approach was

selected due to design constraints restricting the use of third party tools (such

as GraphViz) for visualization of the boundary diagrams. If using third-party

software was a possibility, graph visualization could demonstrably improve (due

to constantly improving graph visualization techniques) while incurring less of

a maintenance cost for the BDT itself.

The tool also employs a quantitative approach to evaluate the impact of

a change: it measures the extent of the impact of a change by calculating a

metric carefully defined by our industrial partner to incorporate relevant factors

such as the number of affected models, the number of affected safety models,

68

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

and the number of CAN signals affected.

Finally, applications of the BDT in the software change request procedure of

our industry partner were identified and the tool was integrated in the industrial

partner’s change management process. The BDT can be used in several phases

of the software change request procedure: the analysis and evaluation phase,

the design/implementation phase, and the integration phase all benefit from

change impact analyses performed by the BDT.

The development of the BDT analysis and diagram generation, the improve-

ments to the Reach/Coreach Tool for impact analysis on industrial models,

and the identification of applications of the BDT in the change management

process are all contributions of this thesis.

6.1 Future Work

This section discusses the BDT’s future improvements and new features, extend-

ing the work done in this thesis. The first major work that could be undertaken

is to measure the effectiveness of the tool. This would be accomplished through

calculating precision and recall metrics, similarly to the work performed in

(Rapos and Cordy 2017), on the models of our industrial partner. Addition-

ally, an approach to regression test selection using the BDT was discussed

in Section 5.3.3—this functionality is not implemented yet. Future work will

implement this functionality. It would save developers valuable time when

running and maintaining intensive regression test suites.

Another potential improvement of the BDT tool is tracking change propa-

gation to network interfaces other than CAN. The tool currently tracks change

propagation to CAN network interfaces only. However, other communication

69

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

protocols exist that are also used in the automotive industry, as well as by

our industry partner, such as Shared Memory and LIN (Local Interconnect

Network). Further, future versions of the BDT could include support for

AUTOSAR-compliant embedded systems. Currently, the tool provides im-

pact analysis for one of our industry partner’s controllers: the tool utilizes

a dependency matrix and a CAN mapping sheet, respectively, to trace the

dependencies within the Simulink designs of the controller, with both of these

items being specific to our industry partner. Support for identifying these

dependencies based with representation standardized by the AUTOSAR archi-

tecture would make the tool more universally applicable to users outside of

our industry partner. In order to support all these new dependencies, another

possible avenue of future work is to abstract away from the metadata being

used and create a traceability metamodel that could apply to multiple types

of dependencies and implementations thereof. This would reduce the amount

of effort in maintenance for keeping the BDT updated with newly supported

dependencies.

Finally, there are two categories of major improvements to tracing performed

by the BDT that could be implemented in the future. The first is extending

the analysis beyond the network interfaces. The current implementation of

the BDT only supports tracing of dependencies within a system of Simulink

models and the network interfaces. Future versions of the BDT could support

tracing beyond these network interfaces to other software systems or even to

mechanical or electrical systems. Secondly, the Reach/Coreach Tool used as a

model slicing engine could be improved in several ways. The Reach/Coreach

Tool as used in the BDT could be extended to track the impact of a change on

the timing of a model’s execution. Future versions of the BDT could include

70

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

this functionality either by updating the Reach/Coreach tool to support timing

impacts, or by leveraging a different engine that supports timing analysis in

addition to the Reach/Coreach Tool. The Reach/Coreach Tool could also

be updated to support keeping track of the impact of each individual block

or signal being reached or coreached. With this information, at a significant

memory cost, the cache building operation could potentially take significantly

less time. Additionally, precision of the Reach/Coreach Tool could be improved

by adding support for more precise tracing through Stateflow.

6.2 Closing Remarks

Model-driven development using Simulink is becoming increasingly prevalent

across industries. Industrial software systems built using Simulink are be-

coming very large and difficult to maintain. When multiple engineers are

working on changes for individual models that compose a complex embedded

system, unintended interaction between changes within these models can cause

significant problems and potentially even critical failures during integration.

Impact analyses are needed in order to prevent these issues. A need for an

automated tool that performs impact analysis on systems of Simulink models

inspired the work presented in this thesis. A successful implementation of this

tool was developed for integration into our industry partner’s software change

management process, demonstrating the relevance and usefulness of this work.

71

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Appendices

72

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Appendix A

User Guide

A.1 User Interface

The BDT is used via the Simulink context menu, which can be launched by

right-clicking on a Simulink model. This is shown in Figure A.1.

The BDT can be used when selecting a block, a signal line, or some amount

of either. The following options are available with the BDT:

1. BDT– Brings up the BDT GUI.

2. Configuration – Allows the user to set up several configuration parameters.

3. Get Signal Name – Gets the name of a signal in an unrolled feedback

boundary diagram.

4. Expand Diagram Node – Expands a node in the interactive exploration

boundary diagram.

73

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Figure A.1: BDT in the Simulink context menu.

74

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

A.1.1 BDT GUI

Right-clicking a selection of blocks and/or signal lines in a Simulink model and

selecting the BDT option in the context menu will bring up the BDT GUI.

The BDT GUI has several options that modify how the tool tracks depen-

dencies, as well as several ways to present the results of the analysis to the

user:

1. Whitelist — A list of all models. Here the user chooses which model(s)

to examine in order to find if the selection affects them or is affected by

them, depending on the direction of the analysis.

2. Search Depth — Choose whether to find models which are immediately

dependent on the selection, or are dependent on the selection via other

intermediate models (full). A full analysis is still subject to the Maximum

Recursive Depth, which limits the total depth of models visited in the

analysis (Note that if the Maximum Recursive Depth is set to 1, and a

full analysis is done, this will result in Figure 4.5b).

3. Direction — A toggle to determine whether to run the BDT’s analysis in

an upstream or downstream direction.

4. Analyze — Start the analysis to find the models and CAN signals that

the selection affects. This populates the Affected Models list.

5. Affected Models — A list of models that are affected by z. Select which

models are to be opened in order to have their dependent data/control

flow highlighted. Note: It is recommended to open one model at a time.

6. Showing — Control whether the Affected Models list shows all affected

75

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Figure A.2: The Boundary Analysis GUI for the BDT.

76

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

models, regardless of depth, or only immediately affected models. This

option is only enabled when Search Depth is set to full.

7. View Selected Models — Open the model(s) selected in the Affected

Models list and highlight data/control flow to show how they are affected

by the selection. This button is only enabled after the analysis is complete.

8. View Affected CAN — Show the CAN signal(s) that the selection affects.

This button is only enabled after the analysis is complete.

9. View Impact Metric — Show the score of the impact analysis as deter-

mined by the Impact Metric.

10. Generate Diagram — Opens a GUI for generation of boundary diagrams,

demonstrating different views of the impact of the selection. For more

information, see Chapter 4.

11. Status — A display of the current progress of the tool.

A.1.2 Diagram Generation GUI

After performing an analysis with the BDT the user may push the Generate

Boundary Diagram on the GUI, which brings up this secondary GUI.

This GUI presents to the user several options pertaining to how the boundary

diagram is to be generated:

1. Diagram Type — These three options represent the types of diagrams

that can be generated: All Impacts, Impact to Safety, and Interactive

Exploration. For more information on these types of diagrams, see

Chapter 4.

77

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Figure A.3: The Diagram Generation GUI for the BDT.

2. Generate Diagram — A button that generates a boundary diagram of

the type indicated in the Diagram Type button group.

3. Impacted Models — A list of models found in the impact analysis.

4. To Model? — A button group that lets the user toggle whether or not

the user wishes to restrict the scope of the generated boundary diagram

by only showing impacts to the selected models in the Impacted Models

listbox.

A.1.3 Configuration GUI

Right-clicking on the Simulink model to bring up the context menu, and then

selecting the Configuration option in the GUI brings up the Configuration GUI.

This GUI presents several options to the user that modify how the BDT

operates:

• Trace to CAN? – Enable/disable the component of the analysis which

78

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Figure A.4: The Configuration GUI for the BDT.

79

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

determines the impact to the CAN. Should be set to No if you do not

have a mapping sheet available.

• CAN Mapping Sheet – The CAN mapping sheet being used to deter-

mine impact to the CAN, as described in Section 3.2

• Build CAN Mapping – The BDT uses several internal mappings to

speed up its operations, as indicated in Section 3.4.2. For the CAN, the

mapping should be generated once, every time a new CAN mapping sheet

is used, and are saved internally by the tool to use for any subsequent

CAN related operations.

• Recursive Depth Limit – The depth at which to stop the Analysis

operation. If a full analysis is being done, this will limit the depth that

the analysis will trace to other models. Setting this at 0 will indicate

that there is no depth limit being used.

• Tracing Color – The colors to use when viewing the impact on models.

80

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Bibliography

Bennett, K. H. (1990). “An introduction to software maintenance”. In:

Information and Software Technology 12.4, pp. 257–264 (cit. on p. 1).

Bohner, S. A. (1996). “Impact analysis in the software change process: a year

2000 perspective”. In: 1996 Proceedings of International Conference on

Software Maintenance, pp. 42–51 (cit. on pp. 1, 2).

Briand, Lionel C, Yvan Labiche, and Siyuan He (2009). “Automating regres-

sion test selection based on UML designs”. In: Information and Software

Technology 51.1, pp. 16–30 (cit. on p. 65).

Charette, R. N. (2009). This car runs on code. https://spectrum.ieee.org/

transportation/systems/this-car-runs-on-code. [Online; accessed

June 4th, 2018] (cit. on p. 1).

Fürst, Simon et al. (2009). “AUTOSAR–A Worldwide Standard is on the

Road”. In: 14th International VDI Congress Electronic Systems for Vehicles,

Baden-Baden. Vol. 62, p. 5 (cit. on p. 5).

Galbo, Stephanie Perez Day (2017). “A Survey of Impact Analysis Tools for

Effective Code Evolution”. PhD thesis (cit. on p. 3).

GraphViz (2018). GraphViz - Graph Visualization Software. https://www.

graphviz.org/. [Online; accessed June, 2018] (cit. on p. 48).

81

https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://www.graphviz.org/
https://www.graphviz.org/

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

Herman, Ivan, Guy Melançon, and M Scott Marshall (2000). “Graph visual-

ization and navigation in information visualization: A survey”. In: IEEE

Transactions on visualization and computer graphics 6.1, pp. 24–43 (cit. on

pp. 6, 50).

IEC (2010). IEC 61508 - Functional Safety of E/E/Programmable Electronic

Safety-related Systems. International Electrotechnical Commission (cit. on

p. 2).

ISO (2011a). ISO 26262-8: Road vehicles – Functional safety – Part 8: Sup-

porting processes, International Organization for Standardization (ISO)

(cit. on pp. 55, 61, 67).

— (2011b). ISO 26262: Road vehicles – Functional safety, International

Organization for Standardization (ISO) (cit. on pp. 2, 5, 7).

Kowalewski, Thomas Gerlitz1 Norman Hansen1Christian Dernehl1Stefan (2016).

“artshop: A continuous integration and quality assessment framework for

model-based software artifacts”. In: Tagungsband des Dagstuhl-Workshops,

p. 13 (cit. on pp. 4, 23, 24).

Lindland, J. L. (2007). The Seven Failure Modes - Failure Modes and Effects

Analysis. The Bella Group, Inc. USA (cit. on p. 6).

Lindvall, Mikael (1997). “Evaluating Impact Analysis – A Case Study”. In:

Empirical Softw. Engg. 2.2, pp. 152–158. issn: 1382-3256 (cit. on p. 2).

MathWorks (2018a). Isolating Problematic Behavior with Model Slicer. https:

//www.mathworks.com/products/sldesignverifier/features.html#

isolating-problematic-behavior-with-model-slicer. [Online; ac-

cessed June, 2018] (cit. on pp. 4, 22).

82

https://www.mathworks.com/products/sldesignverifier/features.html#isolating-problematic-behavior-with-model-slicer
https://www.mathworks.com/products/sldesignverifier/features.html#isolating-problematic-behavior-with-model-slicer
https://www.mathworks.com/products/sldesignverifier/features.html#isolating-problematic-behavior-with-model-slicer

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

MathWorks (2018b). Perform Impact Analysis. https://www.mathworks.

com/help/simulink/ug/perform- impact- analysis.html. [Online;

accessed June, 2018] (cit. on pp. 4, 24).

McSCert (2018a). Auto Layout Tool. https : / / www . mathworks . com /

matlabcentral/fileexchange/51228-auto-layout-tool. [Online; ac-

cessed June, 2018] (cit. on pp. 21, 26, 49).

— (2018b). Reach/Coreach Tool. https://www.mathworks.com/matlabcentral/

fileexchange/51180- reach- coreach- tool. [Online; accessed June,

2018] (cit. on p. 26).

Pantelic, Vera et al. (2018). “Software engineering practices and Simulink:

bridging the gap”. In: International Journal on Software Tools for Technol-

ogy Transfer 20.1, pp. 95–117. issn: 1433-2787 (cit. on pp. 3, 5, 10, 22,

64).

Rapos, Eric J and James R Cordy (2017). “SimPact: Impact analysis for

simulink models”. In: Software Maintenance and Evolution (ICSME), 2017

IEEE International Conference on. IEEE, pp. 489–493 (cit. on pp. 4, 24,

69).

Reicherdt, Robert and Sabine Glesner (2012). “Slicing MATLAB Simulink

Models”. In: Proc. 2012 Intl Conf. on Software Engineering. ICSE 2012.

Zurich, Switzerland: IEEE Press, pp. 551–561. isbn: 978-1-4673-1067-3

(cit. on pp. 4, 22, 23).

The MathWorks (2012). MathWorks Automotive Advisory Board (MAAB):

Control Algorithm Modeling Guidelines Using MATLAB, Simulink, and

Stateflow, Version 3.0. Version 3.0. url: www . mathworks . com /

solutions/automotive/standards/maab.html (cit. on p. 38).

83

https://www.mathworks.com/help/simulink/ug/perform-impact-analysis.html
https://www.mathworks.com/help/simulink/ug/perform-impact-analysis.html
https://www.mathworks.com/matlabcentral/fileexchange/51228-auto-layout-tool
https://www.mathworks.com/matlabcentral/fileexchange/51228-auto-layout-tool
https://www.mathworks.com/matlabcentral/fileexchange/51180-reach-coreach-tool
https://www.mathworks.com/matlabcentral/fileexchange/51180-reach-coreach-tool
www.mathworks.com/solutions/automotive/standards/maab.html
www.mathworks.com/solutions/automotive/standards/maab.html

M.A.Sc. Thesis – Bennett Mackenzie McMaster University – Computing and Software

de la Vara, J. L. et al. (2016). “An Industrial Survey of Safety Evidence

Change Impact Analysis Practice”. In: IEEE Transactions on Software

Engineering 42.12, pp. 1095–1117. issn: 0098-5589 (cit. on p. 2).

Workgroup, E.G.A.S. (2013). Standardized E-Gas Monitoring Concept for

Gasoline and Diesel Engine Control Units (cit. on p. 55).

84

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Listings
	Introduction
	Motivation
	Approach
	Contributions
	Thesis Structure

	Preliminaries
	Matlab and Simulink
	Reach/Coreach Tool
	Support for Different Simulink Blocks

	The Auto Layout Tool
	Related Work

	The Boundary Diagram Tool
	General Overview
	Operational Environment
	Dependencies
	Requirements
	Limitations
	Software Architecture

	Tracing Between Models and to/from Network Interfaces
	Correctness of the BDT Analysis
	Performance Considerations for Industrial Applications
	Performance Improvements for Reach/Coreach on Large Models
	Cache Building

	Filters for Impact Analysis
	Measuring Impact
	Summary

	Boundary Diagram Generation
	Boundary Diagram Generation: Implementation
	Legibility Concerns
	Interactive Exploration
	Specific Diagram Views
	Immediate Impact
	Model A to Model B
	Impact on Functional Safety

	Boundary Diagram Tool in Software Change Management
	Software Change Management
	The Software Change Procedure

	Maintaining Cache
	Applications in the Software Change Procedure
	BDT in Software Change Request Analysis and Evaluation
	BDT in Change Implementation
	Impact Analysis in Regression Testing
	Impact Analysis in Integration

	Conclusions and Future Work
	Future Work
	Closing Remarks

	Appendices
	User Guide
	User Interface
	BDT GUI
	Diagram Generation GUI
	Configuration GUI

